Cargando…
Enhanced prediction of postoperative radiotherapy‐induced esophagitis in non‐small cell lung cancer: Dosiomic model development in a real‐world cohort and validation in the PORT‐C randomized controlled trial
BACKGROUND: Radiotherapy‐induced esophagitis (RE) diminishes the quality of life and interrupts treatment in patients with non‐small cell lung cancer (NSCLC) undergoing postoperative radiotherapy. Dosimetric models showed limited capability in predicting RE. We aimed to develop dosiomic models to pr...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542460/ https://www.ncbi.nlm.nih.gov/pubmed/37596813 http://dx.doi.org/10.1111/1759-7714.15068 |
_version_ | 1785114098994774016 |
---|---|
author | Ma, Zeliang Liang, Bin Wei, Ran Liu, Yunsong Bao, Yongxing Yuan, Meng Men, Yu Wang, Jianyang Deng, Lei Zhai, Yirui Bi, Nan Wang, Luhua Dai, Jianrong Hui, Zhouguang |
author_facet | Ma, Zeliang Liang, Bin Wei, Ran Liu, Yunsong Bao, Yongxing Yuan, Meng Men, Yu Wang, Jianyang Deng, Lei Zhai, Yirui Bi, Nan Wang, Luhua Dai, Jianrong Hui, Zhouguang |
author_sort | Ma, Zeliang |
collection | PubMed |
description | BACKGROUND: Radiotherapy‐induced esophagitis (RE) diminishes the quality of life and interrupts treatment in patients with non‐small cell lung cancer (NSCLC) undergoing postoperative radiotherapy. Dosimetric models showed limited capability in predicting RE. We aimed to develop dosiomic models to predict RE. METHODS: Models were trained with a real‐world cohort and validated with PORT‐C randomized controlled trial cohort. Patients with NSCLC undergoing resection followed by postoperative radiotherapy between 2004 and 2015 were enrolled. The endpoint was grade ≥2 RE. Esophageal three‐dimensional dose distribution features were extracted using handcrafted and convolutional neural network (CNN) methods, screened using an entropy‐based method, and selected using minimum redundancy and maximum relevance. Prediction models were built using logistic regression. The areas under the receiver operating characteristic curve (AUC) and precision‐recall curve were used to evaluate prediction model performance. A dosimetric model was built for comparison. RESULTS: A total of 190 and 103 patients were enrolled in the training and validation sets, respectively. Using handcrafted and CNN methods, 107 and 4096 features were derived, respectively. Three handcrafted, four CNN‐extracted and three dosimetric features were selected. AUCs of training and validation sets were 0.737 and 0.655 for the dosimetric features, 0.730 and 0.724 for handcrafted features, and 0.812 and 0.785 for CNN‐extracted features, respectively. Precision‐recall curves revealed that CNN‐extracted features outperformed dosimetric and handcrafted features. CONCLUSIONS: Prediction models may identify patients at high risk of developing RE. Dosiomic models outperformed the dosimetric‐feature model in predicting RE. CNN‐extracted features were more predictive but less interpretable than handcrafted features. |
format | Online Article Text |
id | pubmed-10542460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley & Sons Australia, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-105424602023-10-03 Enhanced prediction of postoperative radiotherapy‐induced esophagitis in non‐small cell lung cancer: Dosiomic model development in a real‐world cohort and validation in the PORT‐C randomized controlled trial Ma, Zeliang Liang, Bin Wei, Ran Liu, Yunsong Bao, Yongxing Yuan, Meng Men, Yu Wang, Jianyang Deng, Lei Zhai, Yirui Bi, Nan Wang, Luhua Dai, Jianrong Hui, Zhouguang Thorac Cancer Original Articles BACKGROUND: Radiotherapy‐induced esophagitis (RE) diminishes the quality of life and interrupts treatment in patients with non‐small cell lung cancer (NSCLC) undergoing postoperative radiotherapy. Dosimetric models showed limited capability in predicting RE. We aimed to develop dosiomic models to predict RE. METHODS: Models were trained with a real‐world cohort and validated with PORT‐C randomized controlled trial cohort. Patients with NSCLC undergoing resection followed by postoperative radiotherapy between 2004 and 2015 were enrolled. The endpoint was grade ≥2 RE. Esophageal three‐dimensional dose distribution features were extracted using handcrafted and convolutional neural network (CNN) methods, screened using an entropy‐based method, and selected using minimum redundancy and maximum relevance. Prediction models were built using logistic regression. The areas under the receiver operating characteristic curve (AUC) and precision‐recall curve were used to evaluate prediction model performance. A dosimetric model was built for comparison. RESULTS: A total of 190 and 103 patients were enrolled in the training and validation sets, respectively. Using handcrafted and CNN methods, 107 and 4096 features were derived, respectively. Three handcrafted, four CNN‐extracted and three dosimetric features were selected. AUCs of training and validation sets were 0.737 and 0.655 for the dosimetric features, 0.730 and 0.724 for handcrafted features, and 0.812 and 0.785 for CNN‐extracted features, respectively. Precision‐recall curves revealed that CNN‐extracted features outperformed dosimetric and handcrafted features. CONCLUSIONS: Prediction models may identify patients at high risk of developing RE. Dosiomic models outperformed the dosimetric‐feature model in predicting RE. CNN‐extracted features were more predictive but less interpretable than handcrafted features. John Wiley & Sons Australia, Ltd 2023-08-19 /pmc/articles/PMC10542460/ /pubmed/37596813 http://dx.doi.org/10.1111/1759-7714.15068 Text en © 2023 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Ma, Zeliang Liang, Bin Wei, Ran Liu, Yunsong Bao, Yongxing Yuan, Meng Men, Yu Wang, Jianyang Deng, Lei Zhai, Yirui Bi, Nan Wang, Luhua Dai, Jianrong Hui, Zhouguang Enhanced prediction of postoperative radiotherapy‐induced esophagitis in non‐small cell lung cancer: Dosiomic model development in a real‐world cohort and validation in the PORT‐C randomized controlled trial |
title | Enhanced prediction of postoperative radiotherapy‐induced esophagitis in non‐small cell lung cancer: Dosiomic model development in a real‐world cohort and validation in the PORT‐C randomized controlled trial |
title_full | Enhanced prediction of postoperative radiotherapy‐induced esophagitis in non‐small cell lung cancer: Dosiomic model development in a real‐world cohort and validation in the PORT‐C randomized controlled trial |
title_fullStr | Enhanced prediction of postoperative radiotherapy‐induced esophagitis in non‐small cell lung cancer: Dosiomic model development in a real‐world cohort and validation in the PORT‐C randomized controlled trial |
title_full_unstemmed | Enhanced prediction of postoperative radiotherapy‐induced esophagitis in non‐small cell lung cancer: Dosiomic model development in a real‐world cohort and validation in the PORT‐C randomized controlled trial |
title_short | Enhanced prediction of postoperative radiotherapy‐induced esophagitis in non‐small cell lung cancer: Dosiomic model development in a real‐world cohort and validation in the PORT‐C randomized controlled trial |
title_sort | enhanced prediction of postoperative radiotherapy‐induced esophagitis in non‐small cell lung cancer: dosiomic model development in a real‐world cohort and validation in the port‐c randomized controlled trial |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542460/ https://www.ncbi.nlm.nih.gov/pubmed/37596813 http://dx.doi.org/10.1111/1759-7714.15068 |
work_keys_str_mv | AT mazeliang enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT liangbin enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT weiran enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT liuyunsong enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT baoyongxing enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT yuanmeng enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT menyu enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT wangjianyang enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT denglei enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT zhaiyirui enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT binan enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT wangluhua enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT daijianrong enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial AT huizhouguang enhancedpredictionofpostoperativeradiotherapyinducedesophagitisinnonsmallcelllungcancerdosiomicmodeldevelopmentinarealworldcohortandvalidationintheportcrandomizedcontrolledtrial |