Cargando…

Probing the physiological role of the plastid outer-envelope membrane using the oemiR plasmid collection

Plastids are the site of complex biochemical pathways, most prominently photosynthesis. The organelle evolved through endosymbiosis with a cyanobacterium, which is exemplified by the outer envelope membrane that harbors more than 40 proteins in Arabidopsis. Their evolutionary conservation indicates...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwenkert, Serena, Lo, Wing Tung, Szulc, Beata, Yip, Chun Kwan, Pratt, Anna I, Cusack, Siobhan A, Brandt, Benjamin, Leister, Dario, Kunz, Hans-Henning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542568/
https://www.ncbi.nlm.nih.gov/pubmed/37572358
http://dx.doi.org/10.1093/g3journal/jkad187
Descripción
Sumario:Plastids are the site of complex biochemical pathways, most prominently photosynthesis. The organelle evolved through endosymbiosis with a cyanobacterium, which is exemplified by the outer envelope membrane that harbors more than 40 proteins in Arabidopsis. Their evolutionary conservation indicates high significance for plant cell function. While a few proteins are well-studied as part of the protein translocon complex the majority of outer envelope protein functions is unclear. Gaining a deeper functional understanding has been complicated by the lack of observable loss-of-function mutant phenotypes, which is often rooted in functional genetic redundancy. Therefore, we designed outer envelope-specific artificial micro RNAs (oemiRs) capable of downregulating transcripts from several loci simultaneously. We successfully tested oemiR function by performing a proof-of-concept screen for pale and cold-sensitive mutants. An in-depth analysis of pale mutant alleles deficient in the translocon component TOC75 using proteomics provided new insights into putative compensatory import pathways. The cold stress screen not only recapitulated 3 previously known phenotypes of cold-sensitive mutants but also identified 4 mutants of additional oemiR outer envelope loci. Altogether our study revealed a role of the outer envelope to tolerate cold conditions and showcasts the power of the oemiR collection to research the significance of outer envelope proteins.