Cargando…
How Does Pruning Impact Long-Tailed Multi-Label Medical Image Classifiers?
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance. However, the nuanced ways in which pruning impacts model behavior are not well understood, particularly for long-tailed, mul...
Autores principales: | Holste, Gregory, Jiang, Ziyu, Jaiswal, Ajay, Hanna, Maria, Minkowitz, Shlomo, Legasto, Alan C., Escalon, Joanna G., Steinberger, Sharon, Bittman, Mark, Shen, Thomas C., Ding, Ying, Summers, Ronald M., Shih, George, Peng, Yifan, Wang, Zhangyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543014/ https://www.ncbi.nlm.nih.gov/pubmed/37791108 |
Ejemplares similares
-
Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge
por: Holste, Gregory, et al.
Publicado: (2023) -
Heavy tails and pruning in programmable photonic circuits for universal unitaries
por: Yu, Sunkyu, et al.
Publicado: (2023) -
Improving model fairness in image-based computer-aided diagnosis
por: Lin, Mingquan, et al.
Publicado: (2023) -
Granulomatous lymphadenitis in the inferior pulmonary ligament
por: Girvin, Francis, et al.
Publicado: (2022) -
Biometric Contrastive Learning for Data-Efficient Deep Learning from Electrocardiographic Images
por: Sangha, Veer, et al.
Publicado: (2023)