Cargando…
Disparities in seizure outcomes revealed by large language models
OBJECTIVE: Large-language models (LLMs) in healthcare have the potential to propagate existing biases or introduce new ones. For people with epilepsy, social determinants of health are associated with disparities in access to care, but their impact on seizure outcomes among those with access to spec...
Autores principales: | Xie, Kevin, Ojemann, William K.S., Gallagher, Ryan S., Lucas, Alfredo, Hill, Chloé E., Hamilton, Roy H., Johnson, Kevin B., Roth, Dan, Litt, Brian, Ellis, Colin A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543059/ https://www.ncbi.nlm.nih.gov/pubmed/37790442 http://dx.doi.org/10.1101/2023.09.20.23295842 |
Ejemplares similares
-
Generalization of finetuned transformer language models to new clinical contexts
por: Xie, Kevin, et al.
Publicado: (2023) -
Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing
por: Xie, Kevin, et al.
Publicado: (2022) -
Quantifying interictal intracranial EEG to predict focal epilepsy
por: Gallagher, Ryan S, et al.
Publicado: (2023) -
Resting-state background features demonstrate multidien cycles in long-term EEG device recordings
por: Ojemann, William K.S., et al.
Publicado: (2023) -
Human Temporal Cortical Single Neuron Activity during Language: A Review
por: Ojemann, George A.
Publicado: (2013)