Cargando…
High‐accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding
The human brain is a complex network comprised of functionally and anatomically interconnected brain regions. A growing number of studies have suggested that empirical estimates of brain networks may be useful for discovery of biomarkers of disease and cognitive state. A prerequisite for realizing t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543109/ https://www.ncbi.nlm.nih.gov/pubmed/37498048 http://dx.doi.org/10.1002/hbm.26423 |
_version_ | 1785114227594231808 |
---|---|
author | Hannum, Andrew Lopez, Mario A. Blanco, Saúl A. Betzel, Richard F. |
author_facet | Hannum, Andrew Lopez, Mario A. Blanco, Saúl A. Betzel, Richard F. |
author_sort | Hannum, Andrew |
collection | PubMed |
description | The human brain is a complex network comprised of functionally and anatomically interconnected brain regions. A growing number of studies have suggested that empirical estimates of brain networks may be useful for discovery of biomarkers of disease and cognitive state. A prerequisite for realizing this aim, however, is that brain networks also serve as reliable markers of an individual. Here, using Human Connectome Project data, we build upon recent studies examining brain‐based fingerprints of individual subjects and cognitive states based on cognitively demanding tasks that assess, for example, working memory, theory of mind, and motor function. Our approach achieves accuracy of up to 99% for both identification of the subject of an fMRI scan, and for classification of the cognitive state of a previously unseen subject in a scan. More broadly, we explore the accuracy and reliability of five different machine learning techniques on subject fingerprinting and cognitive state decoding objectives, using functional connectivity data from fMRI scans of a high number of subjects (865) across a number of cognitive states (8). These results represent an advance on existing techniques for functional connectivity‐based brain fingerprinting and state decoding. Additionally, 16 different functional connectome (FC) matrix construction pipelines are compared in order to characterize the effects of different aspects of the production of FCs on the accuracy of subject and task classification, and to identify possible confounds. |
format | Online Article Text |
id | pubmed-10543109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105431092023-10-03 High‐accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding Hannum, Andrew Lopez, Mario A. Blanco, Saúl A. Betzel, Richard F. Hum Brain Mapp Research Articles The human brain is a complex network comprised of functionally and anatomically interconnected brain regions. A growing number of studies have suggested that empirical estimates of brain networks may be useful for discovery of biomarkers of disease and cognitive state. A prerequisite for realizing this aim, however, is that brain networks also serve as reliable markers of an individual. Here, using Human Connectome Project data, we build upon recent studies examining brain‐based fingerprints of individual subjects and cognitive states based on cognitively demanding tasks that assess, for example, working memory, theory of mind, and motor function. Our approach achieves accuracy of up to 99% for both identification of the subject of an fMRI scan, and for classification of the cognitive state of a previously unseen subject in a scan. More broadly, we explore the accuracy and reliability of five different machine learning techniques on subject fingerprinting and cognitive state decoding objectives, using functional connectivity data from fMRI scans of a high number of subjects (865) across a number of cognitive states (8). These results represent an advance on existing techniques for functional connectivity‐based brain fingerprinting and state decoding. Additionally, 16 different functional connectome (FC) matrix construction pipelines are compared in order to characterize the effects of different aspects of the production of FCs on the accuracy of subject and task classification, and to identify possible confounds. John Wiley & Sons, Inc. 2023-07-27 /pmc/articles/PMC10543109/ /pubmed/37498048 http://dx.doi.org/10.1002/hbm.26423 Text en © 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Hannum, Andrew Lopez, Mario A. Blanco, Saúl A. Betzel, Richard F. High‐accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding |
title | High‐accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding |
title_full | High‐accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding |
title_fullStr | High‐accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding |
title_full_unstemmed | High‐accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding |
title_short | High‐accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding |
title_sort | high‐accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543109/ https://www.ncbi.nlm.nih.gov/pubmed/37498048 http://dx.doi.org/10.1002/hbm.26423 |
work_keys_str_mv | AT hannumandrew highaccuracymachinelearningtechniquesforfunctionalconnectomefingerprintingandcognitivestatedecoding AT lopezmarioa highaccuracymachinelearningtechniquesforfunctionalconnectomefingerprintingandcognitivestatedecoding AT blancosaula highaccuracymachinelearningtechniquesforfunctionalconnectomefingerprintingandcognitivestatedecoding AT betzelrichardf highaccuracymachinelearningtechniquesforfunctionalconnectomefingerprintingandcognitivestatedecoding |