Cargando…
Machine learning approach in predicting GlutoPeak test parameters from image data with AutoML and transfer learning
This study introduces a novel machine learning methodology for predicting GlutoPeak test parameters from image data, leveraging AutoKeras and transfer learning. The GlutoPeak test is a tool used in the baking industry to evaluate the properties of flour, based on its gluten strength and elasticity....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543207/ https://www.ncbi.nlm.nih.gov/pubmed/37790976 http://dx.doi.org/10.1016/j.heliyon.2023.e20522 |
_version_ | 1785114249691922432 |
---|---|
author | Murai, Takehiro Inoue, Yoshitaka Nambirige, Assey Annor, George A. |
author_facet | Murai, Takehiro Inoue, Yoshitaka Nambirige, Assey Annor, George A. |
author_sort | Murai, Takehiro |
collection | PubMed |
description | This study introduces a novel machine learning methodology for predicting GlutoPeak test parameters from image data, leveraging AutoKeras and transfer learning. The GlutoPeak test is a tool used in the baking industry to evaluate the properties of flour, based on its gluten strength and elasticity. Our research aimed to devise an efficient and cost-effective technique for quantifying the gluten properties of wheat varieties. We aimed to accomplish this by predicting the GlutoPeak test results with convolutional neural network (CNN) models, utilizing the benefits of transfer learning and AutoKeras. AutoKeras is a public code repository capable of automating neural architecture search and hyperparameter tuning. The ResNet101 model, when trained with the Adam optimizer, achieved the highest accuracy of 0.5765 in the 2-class prediction. Meanwhile, the ResNet101 model trained with the SGD optimizer reached the highest accuracy of 0.4362 in the 4-class prediction. The outcomes of this study illustrate the possibility in using machine learning and deep learning techniques for predicting GlutoPeak test parameters from image data. This offers a faster and more cost-effective approach for evaluating gluten quality in wheat varieties. |
format | Online Article Text |
id | pubmed-10543207 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-105432072023-10-03 Machine learning approach in predicting GlutoPeak test parameters from image data with AutoML and transfer learning Murai, Takehiro Inoue, Yoshitaka Nambirige, Assey Annor, George A. Heliyon Research Article This study introduces a novel machine learning methodology for predicting GlutoPeak test parameters from image data, leveraging AutoKeras and transfer learning. The GlutoPeak test is a tool used in the baking industry to evaluate the properties of flour, based on its gluten strength and elasticity. Our research aimed to devise an efficient and cost-effective technique for quantifying the gluten properties of wheat varieties. We aimed to accomplish this by predicting the GlutoPeak test results with convolutional neural network (CNN) models, utilizing the benefits of transfer learning and AutoKeras. AutoKeras is a public code repository capable of automating neural architecture search and hyperparameter tuning. The ResNet101 model, when trained with the Adam optimizer, achieved the highest accuracy of 0.5765 in the 2-class prediction. Meanwhile, the ResNet101 model trained with the SGD optimizer reached the highest accuracy of 0.4362 in the 4-class prediction. The outcomes of this study illustrate the possibility in using machine learning and deep learning techniques for predicting GlutoPeak test parameters from image data. This offers a faster and more cost-effective approach for evaluating gluten quality in wheat varieties. Elsevier 2023-09-28 /pmc/articles/PMC10543207/ /pubmed/37790976 http://dx.doi.org/10.1016/j.heliyon.2023.e20522 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Murai, Takehiro Inoue, Yoshitaka Nambirige, Assey Annor, George A. Machine learning approach in predicting GlutoPeak test parameters from image data with AutoML and transfer learning |
title | Machine learning approach in predicting GlutoPeak test parameters from image data with AutoML and transfer learning |
title_full | Machine learning approach in predicting GlutoPeak test parameters from image data with AutoML and transfer learning |
title_fullStr | Machine learning approach in predicting GlutoPeak test parameters from image data with AutoML and transfer learning |
title_full_unstemmed | Machine learning approach in predicting GlutoPeak test parameters from image data with AutoML and transfer learning |
title_short | Machine learning approach in predicting GlutoPeak test parameters from image data with AutoML and transfer learning |
title_sort | machine learning approach in predicting glutopeak test parameters from image data with automl and transfer learning |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543207/ https://www.ncbi.nlm.nih.gov/pubmed/37790976 http://dx.doi.org/10.1016/j.heliyon.2023.e20522 |
work_keys_str_mv | AT muraitakehiro machinelearningapproachinpredictingglutopeaktestparametersfromimagedatawithautomlandtransferlearning AT inoueyoshitaka machinelearningapproachinpredictingglutopeaktestparametersfromimagedatawithautomlandtransferlearning AT nambirigeassey machinelearningapproachinpredictingglutopeaktestparametersfromimagedatawithautomlandtransferlearning AT annorgeorgea machinelearningapproachinpredictingglutopeaktestparametersfromimagedatawithautomlandtransferlearning |