Cargando…

Melatonin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduce inflammation, inhibit apoptosis and protect rat’s liver from the hazardous effects of CCL4

Liver is an important organ that carries out major important functions including the detoxification of harmful chemicals. Numerous studies have lately focused on the impact of various substances, such as chemical pollutants and pharmaceutical drugs, on the liver. Melatonin (Mel) has been reported fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Farid, Alyaa, Michael, Valina, Safwat, Gehan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543381/
https://www.ncbi.nlm.nih.gov/pubmed/37777583
http://dx.doi.org/10.1038/s41598-023-43546-4
_version_ 1785114289968775168
author Farid, Alyaa
Michael, Valina
Safwat, Gehan
author_facet Farid, Alyaa
Michael, Valina
Safwat, Gehan
author_sort Farid, Alyaa
collection PubMed
description Liver is an important organ that carries out major important functions including the detoxification of harmful chemicals. Numerous studies have lately focused on the impact of various substances, such as chemical pollutants and pharmaceutical drugs, on the liver. Melatonin (Mel) has been reported for the protection against liver injury. In order to enhance Mel therapeutic benefits and prevent any potential negative effects, Mel has to be delivered to the injured liver. Therefore, the goal of the current investigation was to create Mel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Mel-PLGA NPs) to alleviate carbon tetrachloride (CCL4)-induced liver damage in male Sprague Dawley rats. The prepared Mel-PLGA NPs were physically characterized to determine its size and charge. Moreover, Mel-PLGA NPs were examined, in vitro, to determine its antioxidant, anticoagulant, anti-inflammatory and cytotoxicity effects before being used in vivo. The effect of NPs on liver injury was evaluated through biochemical, immunological, histopathological examination and flow cytometry technique. Mel-PLGA NPs were smooth and spherical with no signs of aggregation and have in vitro antioxidant, anti-inflammatory and anticoagulant effects. NPs varied in size from 87 to 96 nm in transmission electron microscope images, while their hydrodynamic diameter was 41 nm and their zeta potential was −6 mV. Mel-PLGA NPs had encapsulation efficiency (EE%) and drug loading (DL%) of 59.9 and 12.5%, respectively. Treatment with Mel-PLGA NPs ameliorated all histopathological changes, in liver sections, that resulted from CCL4 administration; where, liver sections of treated groups were similar to those of healthy control GI. NPs administration were superior to free Mel and reversed the elevated levels of liver function enzymes, inflammatory cytokines and matrix metalloproteinases to their normal levels. Moreover, liver sections of groups treated with NPs showed negative immunostaining for nuclear factor-κB (NF-κB) and C-reactive protein indicating their anti-inflammatory behavior. Mel-PLGA NPs significantly protected liver from the toxicity of CCL4. The effective dose of NPs was 5 mg/kg indicating a reduction in the required Mel dose and its associated adverse effects.
format Online
Article
Text
id pubmed-10543381
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105433812023-10-03 Melatonin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduce inflammation, inhibit apoptosis and protect rat’s liver from the hazardous effects of CCL4 Farid, Alyaa Michael, Valina Safwat, Gehan Sci Rep Article Liver is an important organ that carries out major important functions including the detoxification of harmful chemicals. Numerous studies have lately focused on the impact of various substances, such as chemical pollutants and pharmaceutical drugs, on the liver. Melatonin (Mel) has been reported for the protection against liver injury. In order to enhance Mel therapeutic benefits and prevent any potential negative effects, Mel has to be delivered to the injured liver. Therefore, the goal of the current investigation was to create Mel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Mel-PLGA NPs) to alleviate carbon tetrachloride (CCL4)-induced liver damage in male Sprague Dawley rats. The prepared Mel-PLGA NPs were physically characterized to determine its size and charge. Moreover, Mel-PLGA NPs were examined, in vitro, to determine its antioxidant, anticoagulant, anti-inflammatory and cytotoxicity effects before being used in vivo. The effect of NPs on liver injury was evaluated through biochemical, immunological, histopathological examination and flow cytometry technique. Mel-PLGA NPs were smooth and spherical with no signs of aggregation and have in vitro antioxidant, anti-inflammatory and anticoagulant effects. NPs varied in size from 87 to 96 nm in transmission electron microscope images, while their hydrodynamic diameter was 41 nm and their zeta potential was −6 mV. Mel-PLGA NPs had encapsulation efficiency (EE%) and drug loading (DL%) of 59.9 and 12.5%, respectively. Treatment with Mel-PLGA NPs ameliorated all histopathological changes, in liver sections, that resulted from CCL4 administration; where, liver sections of treated groups were similar to those of healthy control GI. NPs administration were superior to free Mel and reversed the elevated levels of liver function enzymes, inflammatory cytokines and matrix metalloproteinases to their normal levels. Moreover, liver sections of groups treated with NPs showed negative immunostaining for nuclear factor-κB (NF-κB) and C-reactive protein indicating their anti-inflammatory behavior. Mel-PLGA NPs significantly protected liver from the toxicity of CCL4. The effective dose of NPs was 5 mg/kg indicating a reduction in the required Mel dose and its associated adverse effects. Nature Publishing Group UK 2023-09-30 /pmc/articles/PMC10543381/ /pubmed/37777583 http://dx.doi.org/10.1038/s41598-023-43546-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Farid, Alyaa
Michael, Valina
Safwat, Gehan
Melatonin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduce inflammation, inhibit apoptosis and protect rat’s liver from the hazardous effects of CCL4
title Melatonin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduce inflammation, inhibit apoptosis and protect rat’s liver from the hazardous effects of CCL4
title_full Melatonin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduce inflammation, inhibit apoptosis and protect rat’s liver from the hazardous effects of CCL4
title_fullStr Melatonin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduce inflammation, inhibit apoptosis and protect rat’s liver from the hazardous effects of CCL4
title_full_unstemmed Melatonin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduce inflammation, inhibit apoptosis and protect rat’s liver from the hazardous effects of CCL4
title_short Melatonin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduce inflammation, inhibit apoptosis and protect rat’s liver from the hazardous effects of CCL4
title_sort melatonin loaded poly(lactic-co-glycolic acid) (plga) nanoparticles reduce inflammation, inhibit apoptosis and protect rat’s liver from the hazardous effects of ccl4
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543381/
https://www.ncbi.nlm.nih.gov/pubmed/37777583
http://dx.doi.org/10.1038/s41598-023-43546-4
work_keys_str_mv AT faridalyaa melatoninloadedpolylacticcoglycolicacidplgananoparticlesreduceinflammationinhibitapoptosisandprotectratsliverfromthehazardouseffectsofccl4
AT michaelvalina melatoninloadedpolylacticcoglycolicacidplgananoparticlesreduceinflammationinhibitapoptosisandprotectratsliverfromthehazardouseffectsofccl4
AT safwatgehan melatoninloadedpolylacticcoglycolicacidplgananoparticlesreduceinflammationinhibitapoptosisandprotectratsliverfromthehazardouseffectsofccl4