Cargando…

Single-sided magnetic resonance-based sensor for point-of-care evaluation of muscle

Magnetic resonance (MR) imaging is a powerful clinical tool for the detection of soft tissue morphology and pathology, which often provides actionable diagnostic information to clinicians. Its clinical use is largely limited due to size, cost, time, and space constraints. Here, we discuss the design...

Descripción completa

Detalles Bibliográficos
Autores principales: Cima, Michael, Sherman, Sydney, Zammit, Alexa, Heo, Won-Seok, Rosen, Matthew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543496/
https://www.ncbi.nlm.nih.gov/pubmed/37790511
http://dx.doi.org/10.21203/rs.3.rs-3335248/v1
Descripción
Sumario:Magnetic resonance (MR) imaging is a powerful clinical tool for the detection of soft tissue morphology and pathology, which often provides actionable diagnostic information to clinicians. Its clinical use is largely limited due to size, cost, time, and space constraints. Here, we discuss the design and performance of a low-field single-sided MR sensor intended for point-of-care (POC) evaluation of skeletal muscle in vivo. The 11kg sensor has a penetration depth of > 8 mm, which allows for an accurate analysis of muscle tissue and can avoid signal from more proximal layers, including subcutaneous adipose tissue. Low operational power and minimal shielding requirements are achieved through the design of a permanent magnet array and surface transceiver coil. We present the in vitro and human in vivo performance of the device for muscle tissue evaluation. The sensor can acquire high signal-to-noise (SNR > 150) measurements in minutes, making it practical as a POC tool for many quantitative diagnostic measurements, including T2 relaxometry.