Cargando…
Time fractional Yang–Abdel–Cattani derivative in generalized MHD Casson fluid flow with heat source and chemical reaction
This present research article investigates the exact analytical solution for the mathematical model of the generalized Casson fluid flow by using the new fractional operator with Rabotnov exponential kernel i.e. Yang–Abdel–Cattani operator. The impacts of heat source, magnetic hydrodynamics and chem...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543644/ https://www.ncbi.nlm.nih.gov/pubmed/37779112 http://dx.doi.org/10.1038/s41598-023-43630-9 |
_version_ | 1785114326119481344 |
---|---|
author | Sehra Sadia, Haleema Haq, Sami Ul Khan, Ilyas |
author_facet | Sehra Sadia, Haleema Haq, Sami Ul Khan, Ilyas |
author_sort | Sehra |
collection | PubMed |
description | This present research article investigates the exact analytical solution for the mathematical model of the generalized Casson fluid flow by using the new fractional operator with Rabotnov exponential kernel i.e. Yang–Abdel–Cattani operator. The impacts of heat source, magnetic hydrodynamics and chemical reactions on the flow of fractional Casson fluid through a vertical flat plate are studied in this article. For the sake of a better interpretation of the rheological behavior of Casson fluid we have used the new operator of fractional order with exponential kernel of Rabotnov known as Yang–Abdel–Cattani operator of fractional derivative. By making use of the technique of Laplace transform we have find the exact analytical solution of the problem in the Mittag–Leffler’s form, for all the three governing equations i.e. Velocity, energy and concentration equation. It has been noticed from the literature that it is challenging to obtain analytical results from fractional fluid model derived by the various fractional operators. This article helps to address this issue by providing analytical solutions for fractionalized fluid models. To analyze the physical importance of different fluid parameters such as Schmidt number, Prandtl number, MHD and alpha on the heat, mass and momentum class are presented through graphs. The concentration of the fluid decreases with Schmidth number and temperature of the fluid decreases with the increasing Prandtl number. The velocity of the fluid decreases with increasing MHD effects and increases with increasing Alpha. The Yang–Abdel–Cattani operator of fractional order can describe the memory effects more suitably than the other fractional operators. |
format | Online Article Text |
id | pubmed-10543644 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105436442023-10-03 Time fractional Yang–Abdel–Cattani derivative in generalized MHD Casson fluid flow with heat source and chemical reaction Sehra Sadia, Haleema Haq, Sami Ul Khan, Ilyas Sci Rep Article This present research article investigates the exact analytical solution for the mathematical model of the generalized Casson fluid flow by using the new fractional operator with Rabotnov exponential kernel i.e. Yang–Abdel–Cattani operator. The impacts of heat source, magnetic hydrodynamics and chemical reactions on the flow of fractional Casson fluid through a vertical flat plate are studied in this article. For the sake of a better interpretation of the rheological behavior of Casson fluid we have used the new operator of fractional order with exponential kernel of Rabotnov known as Yang–Abdel–Cattani operator of fractional derivative. By making use of the technique of Laplace transform we have find the exact analytical solution of the problem in the Mittag–Leffler’s form, for all the three governing equations i.e. Velocity, energy and concentration equation. It has been noticed from the literature that it is challenging to obtain analytical results from fractional fluid model derived by the various fractional operators. This article helps to address this issue by providing analytical solutions for fractionalized fluid models. To analyze the physical importance of different fluid parameters such as Schmidt number, Prandtl number, MHD and alpha on the heat, mass and momentum class are presented through graphs. The concentration of the fluid decreases with Schmidth number and temperature of the fluid decreases with the increasing Prandtl number. The velocity of the fluid decreases with increasing MHD effects and increases with increasing Alpha. The Yang–Abdel–Cattani operator of fractional order can describe the memory effects more suitably than the other fractional operators. Nature Publishing Group UK 2023-10-01 /pmc/articles/PMC10543644/ /pubmed/37779112 http://dx.doi.org/10.1038/s41598-023-43630-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Sehra Sadia, Haleema Haq, Sami Ul Khan, Ilyas Time fractional Yang–Abdel–Cattani derivative in generalized MHD Casson fluid flow with heat source and chemical reaction |
title | Time fractional Yang–Abdel–Cattani derivative in generalized MHD Casson fluid flow with heat source and chemical reaction |
title_full | Time fractional Yang–Abdel–Cattani derivative in generalized MHD Casson fluid flow with heat source and chemical reaction |
title_fullStr | Time fractional Yang–Abdel–Cattani derivative in generalized MHD Casson fluid flow with heat source and chemical reaction |
title_full_unstemmed | Time fractional Yang–Abdel–Cattani derivative in generalized MHD Casson fluid flow with heat source and chemical reaction |
title_short | Time fractional Yang–Abdel–Cattani derivative in generalized MHD Casson fluid flow with heat source and chemical reaction |
title_sort | time fractional yang–abdel–cattani derivative in generalized mhd casson fluid flow with heat source and chemical reaction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543644/ https://www.ncbi.nlm.nih.gov/pubmed/37779112 http://dx.doi.org/10.1038/s41598-023-43630-9 |
work_keys_str_mv | AT sehra timefractionalyangabdelcattaniderivativeingeneralizedmhdcassonfluidflowwithheatsourceandchemicalreaction AT sadiahaleema timefractionalyangabdelcattaniderivativeingeneralizedmhdcassonfluidflowwithheatsourceandchemicalreaction AT haqsamiul timefractionalyangabdelcattaniderivativeingeneralizedmhdcassonfluidflowwithheatsourceandchemicalreaction AT khanilyas timefractionalyangabdelcattaniderivativeingeneralizedmhdcassonfluidflowwithheatsourceandchemicalreaction |