Cargando…
Explainable machine learning for diffraction patterns
Serial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respe...
Autores principales: | Nawaz, Shah, Rahmani, Vahid, Pennicard, David, Setty, Shabarish Pala Ramakantha, Klaudel, Barbara, Graafsma, Heinz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543671/ https://www.ncbi.nlm.nih.gov/pubmed/37791364 http://dx.doi.org/10.1107/S1600576723007446 |
Ejemplares similares
-
Data reduction for X-ray serial crystallography using machine learning
por: Rahmani, Vahid, et al.
Publicado: (2023) -
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries
por: Klaudel, Jacek, et al.
Publicado: (2022) -
Simulations of charge summing and threshold dispersion effects in Medipix3
por: Pennicard, D, et al.
Publicado: (2011) -
Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins
por: Cayron, Cyril, et al.
Publicado: (2009) -
Machine learning for classifying narrow-beam electron diffraction data
por: Matinyan, Senik, et al.
Publicado: (2023)