Cargando…

The dependence of X-ray elastic constants with respect to the penetration depth

X-ray diffraction techniques are widely used to estimate stresses within polycrystalline materials. The application of these techniques requires the knowledge of the X-ray elastic constants relating the lattice strains to the stress state. Different analytical methods have been proposed to evaluate...

Descripción completa

Detalles Bibliográficos
Autor principal: Mareau, Charles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543684/
https://www.ncbi.nlm.nih.gov/pubmed/37791353
http://dx.doi.org/10.1107/S1600576723006878
_version_ 1785114335244189696
author Mareau, Charles
author_facet Mareau, Charles
author_sort Mareau, Charles
collection PubMed
description X-ray diffraction techniques are widely used to estimate stresses within polycrystalline materials. The application of these techniques requires the knowledge of the X-ray elastic constants relating the lattice strains to the stress state. Different analytical methods have been proposed to evaluate the X-ray elastic constants from the single-crystal elastic constants. For a given material, such methods provide the bulk X-ray elastic constants but they do not consider the role of free surfaces. However, for many practical applications of X-ray diffraction techniques, the penetration depth of X-rays is the same order of magnitude as the grain size, which means that the influence of the free surface on X-ray elastic constants cannot be excluded. In the present work, a numerical procedure is proposed to evaluate the surface and bulk X-ray elastic constants of polycrystalline materials. While the former correspond to the situation where the penetration is infinitely small in comparison with the grain size, the latter are representative of an infinite penetration depth with no free-surface effect. According to numerical results, the difference between surface and bulk X-ray elastic constants is important for strongly anisotropic crystals. Also, it is possible to propose a relation that allows evaluating X-ray elastic constants as a function of the ratio between the penetration depth and the average grain size. The corresponding parameters of such a relation are provided here for many engineering materials.
format Online
Article
Text
id pubmed-10543684
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-105436842023-10-03 The dependence of X-ray elastic constants with respect to the penetration depth Mareau, Charles J Appl Crystallogr Research Papers X-ray diffraction techniques are widely used to estimate stresses within polycrystalline materials. The application of these techniques requires the knowledge of the X-ray elastic constants relating the lattice strains to the stress state. Different analytical methods have been proposed to evaluate the X-ray elastic constants from the single-crystal elastic constants. For a given material, such methods provide the bulk X-ray elastic constants but they do not consider the role of free surfaces. However, for many practical applications of X-ray diffraction techniques, the penetration depth of X-rays is the same order of magnitude as the grain size, which means that the influence of the free surface on X-ray elastic constants cannot be excluded. In the present work, a numerical procedure is proposed to evaluate the surface and bulk X-ray elastic constants of polycrystalline materials. While the former correspond to the situation where the penetration is infinitely small in comparison with the grain size, the latter are representative of an infinite penetration depth with no free-surface effect. According to numerical results, the difference between surface and bulk X-ray elastic constants is important for strongly anisotropic crystals. Also, it is possible to propose a relation that allows evaluating X-ray elastic constants as a function of the ratio between the penetration depth and the average grain size. The corresponding parameters of such a relation are provided here for many engineering materials. International Union of Crystallography 2023-09-01 /pmc/articles/PMC10543684/ /pubmed/37791353 http://dx.doi.org/10.1107/S1600576723006878 Text en © Charles Mareau 2023 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
spellingShingle Research Papers
Mareau, Charles
The dependence of X-ray elastic constants with respect to the penetration depth
title The dependence of X-ray elastic constants with respect to the penetration depth
title_full The dependence of X-ray elastic constants with respect to the penetration depth
title_fullStr The dependence of X-ray elastic constants with respect to the penetration depth
title_full_unstemmed The dependence of X-ray elastic constants with respect to the penetration depth
title_short The dependence of X-ray elastic constants with respect to the penetration depth
title_sort dependence of x-ray elastic constants with respect to the penetration depth
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543684/
https://www.ncbi.nlm.nih.gov/pubmed/37791353
http://dx.doi.org/10.1107/S1600576723006878
work_keys_str_mv AT mareaucharles thedependenceofxrayelasticconstantswithrespecttothepenetrationdepth
AT mareaucharles dependenceofxrayelasticconstantswithrespecttothepenetrationdepth