Cargando…
Methylation of arsenic in rice: Mechanisms, factors, and mitigation strategies
Arsenic contamination in rice poses a significant health risk to rice consumers across the globe. This review examines the impact of water source and type on the speciation and methylation of arsenic in rice. The review highlights that groundwater used for irrigation in arsenic-affected regions can...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543780/ https://www.ncbi.nlm.nih.gov/pubmed/37789952 http://dx.doi.org/10.1016/j.toxrep.2023.09.018 |
Sumario: | Arsenic contamination in rice poses a significant health risk to rice consumers across the globe. This review examines the impact of water source and type on the speciation and methylation of arsenic in rice. The review highlights that groundwater used for irrigation in arsenic-affected regions can lead to higher total arsenic content in rice grains and lower proportions of methylated arsenic species. The methylation of As in rice is influenced by microbial activity in groundwater, which can methylate arsenic that is taken up by rice plants. Reclaimed water irrigation can also increase the risk of arsenic accumulation in rice crops, although the use of organic amendments and proper water management practices can reduce arsenic accumulation. Different water management regimes, such as continuous flooding irrigation, alternate wetting and drying, aerobic rice cultivation, and subsurface drip irrigation, can affect the speciation and methylation of As in rice. Continuous flooding irrigation reduces methylation of As due to anaerobic conditions, while alternate wetting and drying and aerobic rice cultivation promote methylation by creating aerobic conditions that stimulate the activity of arsenic-methylating microorganisms. Subsurface drip irrigation reduces total arsenic content in rice grains and increases the proportion of less toxic methylated arsenic species. The review also discusses the complex mechanisms of As-methylation and transport in rice, emphasizing the importance of understanding these mechanisms to develop strategies for reducing arsenic uptake in rice plants and mitigating health risks. The review addresses the impact of water source and type on arsenic speciation and methylation in rice and highlights the need for proper water management and treatment measures to ensure the safety of the food supply as well as aiding future research and policies to reduce health risks from rice consumption. The critical information gaps that this review addresses include the specific effects of different water management regimes on As-methylation, the role of microbial communities in groundwater in As-methylation, and the potential risks associated with the use of reclaimed water for irrigation. |
---|