Cargando…
DGDTA: dynamic graph attention network for predicting drug–target binding affinity
BACKGROUND: Obtaining accurate drug–target binding affinity (DTA) information is significant for drug discovery and drug repositioning. Although some methods have been proposed for predicting DTA, the features of proteins and drugs still need to be further analyzed. Recently, deep learning has been...
Autores principales: | Zhai, Haixia, Hou, Hongli, Luo, Junwei, Liu, Xiaoyan, Wu, Zhengjiang, Wang, Junfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543834/ https://www.ncbi.nlm.nih.gov/pubmed/37777712 http://dx.doi.org/10.1186/s12859-023-05497-5 |
Ejemplares similares
-
SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network
por: Zhang, Shugang, et al.
Publicado: (2021) -
Graph–sequence attention and transformer for predicting drug–target affinity
por: Yan, Xiangfeng, et al.
Publicado: (2022) -
GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity
por: Bae, Haelee, et al.
Publicado: (2022) -
MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction
por: Yang, Ziduo, et al.
Publicado: (2022) -
Heterogeneous graph attention networks for drug virus association prediction
por: Long, Yahui, et al.
Publicado: (2022)