Cargando…

Novel Roles for the Transcriptional Repressor E4BP4 in Both Cardiac Physiology and Pathophysiology

Circadian clocks temporally orchestrate biological processes critical for cellular/organ function. For example, the cardiomyocyte circadian clock modulates cardiac metabolism, signaling, and electrophysiology over the course of the day, such that, disruption of the clock leads to age-onset cardiomyo...

Descripción completa

Detalles Bibliográficos
Autores principales: Mia, Sobuj, Sonkar, Ravi, Williams, Lamario, Latimer, Mary N., Rawnsley, David R., Rana, Samir, He, Jin, Dierickx, Pieterjan, Kim, Teayoun, Xie, Min, Habegger, Kirk M., Kubo, Masato, Zhou, Lufang, Thomsen, Morten B., Prabhu, Sumanth D., Frank, Stuart J., Brookes, Paul S., Lazar, Mitchell A., Diwan, Abhinav, Young, Martin E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543917/
https://www.ncbi.nlm.nih.gov/pubmed/37791313
http://dx.doi.org/10.1016/j.jacbts.2023.03.016
Descripción
Sumario:Circadian clocks temporally orchestrate biological processes critical for cellular/organ function. For example, the cardiomyocyte circadian clock modulates cardiac metabolism, signaling, and electrophysiology over the course of the day, such that, disruption of the clock leads to age-onset cardiomyopathy (through unknown mechanisms). Here, we report that genetic disruption of the cardiomyocyte clock results in chronic induction of the transcriptional repressor E4BP4. Importantly, E4BP4 deletion prevents age-onset cardiomyopathy following clock disruption. These studies also indicate that E4BP4 regulates both cardiac metabolism (eg, fatty acid oxidation) and electrophysiology (eg, QT interval). Collectively, these studies reveal that E4BP4 is a novel regulator of both cardiac physiology and pathophysiology.