Cargando…
Learning Individual Survival Models from PanCancer Whole Transcriptome Data
PURPOSE: Personalized medicine attempts to predict survival time for each patient, based on their individual tumor molecular profile. We investigate whether our survival learner in combination with a dimension reduction method can produce useful survival estimates for a variety of patients with canc...
Autores principales: | Kumar, Neeraj, Skubleny, Daniel, Parkes, Michael, Verma, Ruchika, Davis, Sacha, Kumar, Luke, Aissiou, Amira, Greiner, Russell |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543961/ https://www.ncbi.nlm.nih.gov/pubmed/37463063 http://dx.doi.org/10.1158/1078-0432.CCR-22-3493 |
Ejemplares similares
-
The Pan-Tumor Landscape of Targetable Kinase Fusions in Circulating Tumor DNA
por: Lee, Jessica K., et al.
Publicado: (2022) -
Pan-cancer Analysis of Homologous Recombination Repair–associated Gene Alterations and Genome-wide Loss-of-Heterozygosity Score
por: Westphalen, C. Benedikt, et al.
Publicado: (2022) -
Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma
por: Ziccheddu, Bachisio, et al.
Publicado: (2021) -
Inherited Germline Cancer Susceptibility Gene Variants in Individuals with Non–Muscle-Invasive Bladder Cancer
por: Pietzak, Eugene J., et al.
Publicado: (2022) -
Gallium-68–labeled Peptide PET Quantifies Tumor Exposure of PD-L1 Therapeutics
por: Mishra, Akhilesh, et al.
Publicado: (2023)