Cargando…
Evaluation of a clinically introduced deep learning model for radiotherapy treatment planning of breast cancer
Deep learning (DL) models are increasingly studied to automate the process of radiotherapy treatment planning. This study evaluates the clinical use of such a model for whole breast radiotherapy. Treatment plans were automatically generated, after which planners were allowed to manually adapt them....
Autores principales: | Bakx, Nienke, van der Sangen, Maurice, Theuws, Jacqueline, Bluemink, Johanna, Hurkmans, Coen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544072/ https://www.ncbi.nlm.nih.gov/pubmed/37789873 http://dx.doi.org/10.1016/j.phro.2023.100496 |
Ejemplares similares
-
Development and evaluation of radiotherapy deep learning dose prediction models for breast cancer
por: Bakx, Nienke, et al.
Publicado: (2021) -
Comparison of the output of a deep learning segmentation model for locoregional breast cancer radiotherapy trained on 2 different datasets
por: Bakx, Nienke, et al.
Publicado: (2023) -
Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer
por: van de Sande, Dennis, et al.
Publicado: (2021) -
Reduction of heart and lung normal tissue complication probability using automatic beam angle optimization and more generic optimization objectives for breast radiotherapy
por: Bakx, Nienke, et al.
Publicado: (2021) -
Clinical evaluation of two AI models for automated breast cancer plan generation
por: Kneepkens, Esther, et al.
Publicado: (2022)