Cargando…

Leaf morpho-physiological traits of Populus sibirica and Ulmus pumila in different irrigation regimes and fertilizer types

BACKGROUND: The impacts of climate change, such as increased soil dryness and nutrient deficiency, highlight the need for environmentally sustainable restoration of forests and groundwater resources. However, it is important to consider that extensive afforestation efforts may lead to a depletion of...

Descripción completa

Detalles Bibliográficos
Autores principales: Byambadorj, Ser-Oddamba, Hernandez, Jonathan Ogayon, Lkhagvasuren, Sarangua, Erma, Ge, Sharavdorj, Khulan, Park, Byung Bae, Nyam-Osor, Batkhuu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544310/
https://www.ncbi.nlm.nih.gov/pubmed/37790615
http://dx.doi.org/10.7717/peerj.16107
_version_ 1785114478205992960
author Byambadorj, Ser-Oddamba
Hernandez, Jonathan Ogayon
Lkhagvasuren, Sarangua
Erma, Ge
Sharavdorj, Khulan
Park, Byung Bae
Nyam-Osor, Batkhuu
author_facet Byambadorj, Ser-Oddamba
Hernandez, Jonathan Ogayon
Lkhagvasuren, Sarangua
Erma, Ge
Sharavdorj, Khulan
Park, Byung Bae
Nyam-Osor, Batkhuu
author_sort Byambadorj, Ser-Oddamba
collection PubMed
description BACKGROUND: The impacts of climate change, such as increased soil dryness and nutrient deficiency, highlight the need for environmentally sustainable restoration of forests and groundwater resources. However, it is important to consider that extensive afforestation efforts may lead to a depletion of groundwater supply due to higher evapotranspiration rates, exacerbating water scarcity issues. Consequently, we conducted a study to examine how the fast-growing tree species Populus sibirica (Horth ex Tausch) and Ulmus pumila (L.) respond morpho-physiologically to varying watering regimes and types of fertilizers, aiming to better understand their specific water and nutrient requirements. METHODS: We used two-year-old nursery-growth seedlings (N = 512) of P. sibirica and U. pumila with initial root collar diameter (RCD) and the height of 0.51 ± 0.02 mm and 68 ± 2.94 cm and 0.33 ± 0.01 mm and 51 ± 1.14 cm, respectively. The leaf area (LA), specific leaf area (SLA), chlorophyll concentration, stomatal conductance (g(s)), chlorophyll fluorescence, and predawn and midday leaf water potential were measured across treatments. Four different irrigation regimes and two different fertilizer types were applied: no irrigation (control, 0 L h(−1)), 2 L h(−1) = 0.25 mm m(−2), 4 L h(−1) = 0.5 mm m(−2), 8 L h(−1) = 1.0 mm m(−2) and 120 g and 500 g tree(−1) of NPK and compost (COMP). Twelve plots (600 m(2)) were established in the study site for each species and treatments. RESULTS: During the first growing season (2021), the LA of P. sibirica was larger in the 4–8 L h(−1) without fertilizer, but it was smaller in the 4 L h(−1)+ COMP during the second growing season (2022). The 2 L h(−1) without fertilizer and 2 L h(−1) + NPK had larger LA compared with the control (CONT) for the first and second growing seasons, respectively, for U. pumila. P. sibirica seedlings at 4 L h(−1) without fertilizer had the highest SLA for 2021 and at 2 L h(−1) + NPK for 2022, whereas CONT and 4 L h(−1) had the highest SLA than the other treatments for 2021 and 2022 growing seasons, respectively, for U. pumila. The chlorophyll concentration of P. sibirica seedlings in the first year was generally higher in CONT, while the 2 L h(−1) without any fertilizer yielded a significantly higher chlorophyll concentration of U. pumila. Chlorophyll fluorescence parameters (PI(ABS) and F(m)) were generally lower in CONT with/without NPK or COMP for both species. The CONT with NPK/COMP generally had a higher g(s) compared with the other treatments in both experimental periods for U. pumila, whereas CONT and 2 L h(−1)+ NPK-treated P. sibirica seedlings had a significantly greater g(s) during the first year and second year, respectively. The predawn and midday leaf water potentials of both species were generally the lowest in CONT, followed by 2 L h(−1)+ NPK/COMP during the first growing season, but a different pattern was observed during the second growing season. Overall, the morpho-physiological traits of the two species were affected by watering and fertilizer treatments, and the magnitude of the effects varied depending on growing season, amount of irrigation, and fertilizer type, and their interactions.
format Online
Article
Text
id pubmed-10544310
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-105443102023-10-03 Leaf morpho-physiological traits of Populus sibirica and Ulmus pumila in different irrigation regimes and fertilizer types Byambadorj, Ser-Oddamba Hernandez, Jonathan Ogayon Lkhagvasuren, Sarangua Erma, Ge Sharavdorj, Khulan Park, Byung Bae Nyam-Osor, Batkhuu PeerJ Plant Science BACKGROUND: The impacts of climate change, such as increased soil dryness and nutrient deficiency, highlight the need for environmentally sustainable restoration of forests and groundwater resources. However, it is important to consider that extensive afforestation efforts may lead to a depletion of groundwater supply due to higher evapotranspiration rates, exacerbating water scarcity issues. Consequently, we conducted a study to examine how the fast-growing tree species Populus sibirica (Horth ex Tausch) and Ulmus pumila (L.) respond morpho-physiologically to varying watering regimes and types of fertilizers, aiming to better understand their specific water and nutrient requirements. METHODS: We used two-year-old nursery-growth seedlings (N = 512) of P. sibirica and U. pumila with initial root collar diameter (RCD) and the height of 0.51 ± 0.02 mm and 68 ± 2.94 cm and 0.33 ± 0.01 mm and 51 ± 1.14 cm, respectively. The leaf area (LA), specific leaf area (SLA), chlorophyll concentration, stomatal conductance (g(s)), chlorophyll fluorescence, and predawn and midday leaf water potential were measured across treatments. Four different irrigation regimes and two different fertilizer types were applied: no irrigation (control, 0 L h(−1)), 2 L h(−1) = 0.25 mm m(−2), 4 L h(−1) = 0.5 mm m(−2), 8 L h(−1) = 1.0 mm m(−2) and 120 g and 500 g tree(−1) of NPK and compost (COMP). Twelve plots (600 m(2)) were established in the study site for each species and treatments. RESULTS: During the first growing season (2021), the LA of P. sibirica was larger in the 4–8 L h(−1) without fertilizer, but it was smaller in the 4 L h(−1)+ COMP during the second growing season (2022). The 2 L h(−1) without fertilizer and 2 L h(−1) + NPK had larger LA compared with the control (CONT) for the first and second growing seasons, respectively, for U. pumila. P. sibirica seedlings at 4 L h(−1) without fertilizer had the highest SLA for 2021 and at 2 L h(−1) + NPK for 2022, whereas CONT and 4 L h(−1) had the highest SLA than the other treatments for 2021 and 2022 growing seasons, respectively, for U. pumila. The chlorophyll concentration of P. sibirica seedlings in the first year was generally higher in CONT, while the 2 L h(−1) without any fertilizer yielded a significantly higher chlorophyll concentration of U. pumila. Chlorophyll fluorescence parameters (PI(ABS) and F(m)) were generally lower in CONT with/without NPK or COMP for both species. The CONT with NPK/COMP generally had a higher g(s) compared with the other treatments in both experimental periods for U. pumila, whereas CONT and 2 L h(−1)+ NPK-treated P. sibirica seedlings had a significantly greater g(s) during the first year and second year, respectively. The predawn and midday leaf water potentials of both species were generally the lowest in CONT, followed by 2 L h(−1)+ NPK/COMP during the first growing season, but a different pattern was observed during the second growing season. Overall, the morpho-physiological traits of the two species were affected by watering and fertilizer treatments, and the magnitude of the effects varied depending on growing season, amount of irrigation, and fertilizer type, and their interactions. PeerJ Inc. 2023-09-29 /pmc/articles/PMC10544310/ /pubmed/37790615 http://dx.doi.org/10.7717/peerj.16107 Text en ©2023 Byambadorj et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Plant Science
Byambadorj, Ser-Oddamba
Hernandez, Jonathan Ogayon
Lkhagvasuren, Sarangua
Erma, Ge
Sharavdorj, Khulan
Park, Byung Bae
Nyam-Osor, Batkhuu
Leaf morpho-physiological traits of Populus sibirica and Ulmus pumila in different irrigation regimes and fertilizer types
title Leaf morpho-physiological traits of Populus sibirica and Ulmus pumila in different irrigation regimes and fertilizer types
title_full Leaf morpho-physiological traits of Populus sibirica and Ulmus pumila in different irrigation regimes and fertilizer types
title_fullStr Leaf morpho-physiological traits of Populus sibirica and Ulmus pumila in different irrigation regimes and fertilizer types
title_full_unstemmed Leaf morpho-physiological traits of Populus sibirica and Ulmus pumila in different irrigation regimes and fertilizer types
title_short Leaf morpho-physiological traits of Populus sibirica and Ulmus pumila in different irrigation regimes and fertilizer types
title_sort leaf morpho-physiological traits of populus sibirica and ulmus pumila in different irrigation regimes and fertilizer types
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544310/
https://www.ncbi.nlm.nih.gov/pubmed/37790615
http://dx.doi.org/10.7717/peerj.16107
work_keys_str_mv AT byambadorjseroddamba leafmorphophysiologicaltraitsofpopulussibiricaandulmuspumilaindifferentirrigationregimesandfertilizertypes
AT hernandezjonathanogayon leafmorphophysiologicaltraitsofpopulussibiricaandulmuspumilaindifferentirrigationregimesandfertilizertypes
AT lkhagvasurensarangua leafmorphophysiologicaltraitsofpopulussibiricaandulmuspumilaindifferentirrigationregimesandfertilizertypes
AT ermage leafmorphophysiologicaltraitsofpopulussibiricaandulmuspumilaindifferentirrigationregimesandfertilizertypes
AT sharavdorjkhulan leafmorphophysiologicaltraitsofpopulussibiricaandulmuspumilaindifferentirrigationregimesandfertilizertypes
AT parkbyungbae leafmorphophysiologicaltraitsofpopulussibiricaandulmuspumilaindifferentirrigationregimesandfertilizertypes
AT nyamosorbatkhuu leafmorphophysiologicaltraitsofpopulussibiricaandulmuspumilaindifferentirrigationregimesandfertilizertypes