Cargando…
A macrophage related signature for predicting prognosis and drug sensitivity in ovarian cancer based on integrative machine learning
BACKGROUND: Ovarian cancer ranks the leading cause of gynecologic cancer-related death in the United States and the fifth most common cause of cancer-related mortality among American women. Increasing evidences have highlighted the vital role of macrophages M2/M1 proportion in tumor progression, pro...
Autores principales: | Zhao, Bo, Pei, Lipeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544447/ https://www.ncbi.nlm.nih.gov/pubmed/37784081 http://dx.doi.org/10.1186/s12920-023-01671-z |
Ejemplares similares
-
Machine learning developed a PI3K/Akt pathway-related signature for predicting prognosis and drug sensitivity in ovarian cancer
por: Han, Xiaofang, et al.
Publicado: (2023) -
Machine Learning Developed a Programmed Cell Death Signature for Predicting Prognosis, Ecosystem, and Drug Sensitivity in Ovarian Cancer
por: Wang, Le, et al.
Publicado: (2023) -
Integrated analysis of the M2 macrophage-related signature associated with prognosis in ovarian cancer
por: Peng, Caijiao, et al.
Publicado: (2022) -
The hypoxia-related signature predicts prognosis, pyroptosis and drug sensitivity of osteosarcoma
por: Hu, Lin, et al.
Publicado: (2022) -
m5C-Related Signatures for Predicting Prognosis in Cutaneous Melanoma with Machine Learning
por: Huang, Maoxin, et al.
Publicado: (2021)