Cargando…
Artifact Reduction Proton Density Magnetic Resonance Imaging Can Better Visualize Unicompartmental Knee Arthroplasty Components but Does Not Improve Measurement Accuracy at 3T: An In Vitro Phantom Study
Background There are no studies of the efficacy of slice encoding for metal artifact correction (SEMAC) magnetic resonance imaging (MRI) at 3T for patients following unicompartmental knee arthroplasty (UKA), although the artifact is expected to increase compared with 1.5T. Purpose To clarify whether...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544766/ https://www.ncbi.nlm.nih.gov/pubmed/37790872 http://dx.doi.org/10.7759/cureus.46338 |
_version_ | 1785114553068027904 |
---|---|
author | Takahashi, Tsuneari Takeshita, Katsushi |
author_facet | Takahashi, Tsuneari Takeshita, Katsushi |
author_sort | Takahashi, Tsuneari |
collection | PubMed |
description | Background There are no studies of the efficacy of slice encoding for metal artifact correction (SEMAC) magnetic resonance imaging (MRI) at 3T for patients following unicompartmental knee arthroplasty (UKA), although the artifact is expected to increase compared with 1.5T. Purpose To clarify whether SEMAC MRI can better visualize UKA components and improve measurement accuracy at 3T MRI. Materials and methods The phantom consisted of femoral and tibial standard UKA components embedded in agarose gel. The MR images were scanned on a 3T MR system including proton density (PD) MR images. Six orthopedic surgeons blinded to the size and details of the components independently scored the diagnostic value for measurement and measured the lengths of the femoral posterior condyle, femoral peg, anterior-posterior (AP) tibial component, medial-lateral (ML) tibial component, and tibial keel, with and without SEMAC. Visualization scores were stratified as 0 = definitely nondiagnostic, 1 = probably nondiagnostic, 2 = possibly diagnostic, 3 = probably diagnostic, and 4 = definitely diagnostic. In addition, the differences between actual length and 95% confidence intervals of five measurement points were analyzed. Results The diagnostic values of the posterior condyle (2.0; 1.5 vs. 0; 0) and femoral peg (1.5; 1.0 vs. 0; 0) were significantly better in SEMAC-PD MRI than in non-SEMAC-PD MRI (P<0.05). On the other hand, there were no significant differences in the visualizations of AP, ML, and keel of the tibial components. Measurements of the femoral posterior condyle and tibial keel approached the actual length, but were not involved within the 95% confidence interval (actual length, 19.4 mm vs. 95% CI, 15.7-19.1 mm). Conclusion A significant reduction of metal artifacts was observed only around the femoral component in SEMAC-PD MRI. Despite artifact reduction, this sequence did not result in better visualization for measurement. |
format | Online Article Text |
id | pubmed-10544766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cureus |
record_format | MEDLINE/PubMed |
spelling | pubmed-105447662023-10-03 Artifact Reduction Proton Density Magnetic Resonance Imaging Can Better Visualize Unicompartmental Knee Arthroplasty Components but Does Not Improve Measurement Accuracy at 3T: An In Vitro Phantom Study Takahashi, Tsuneari Takeshita, Katsushi Cureus Radiology Background There are no studies of the efficacy of slice encoding for metal artifact correction (SEMAC) magnetic resonance imaging (MRI) at 3T for patients following unicompartmental knee arthroplasty (UKA), although the artifact is expected to increase compared with 1.5T. Purpose To clarify whether SEMAC MRI can better visualize UKA components and improve measurement accuracy at 3T MRI. Materials and methods The phantom consisted of femoral and tibial standard UKA components embedded in agarose gel. The MR images were scanned on a 3T MR system including proton density (PD) MR images. Six orthopedic surgeons blinded to the size and details of the components independently scored the diagnostic value for measurement and measured the lengths of the femoral posterior condyle, femoral peg, anterior-posterior (AP) tibial component, medial-lateral (ML) tibial component, and tibial keel, with and without SEMAC. Visualization scores were stratified as 0 = definitely nondiagnostic, 1 = probably nondiagnostic, 2 = possibly diagnostic, 3 = probably diagnostic, and 4 = definitely diagnostic. In addition, the differences between actual length and 95% confidence intervals of five measurement points were analyzed. Results The diagnostic values of the posterior condyle (2.0; 1.5 vs. 0; 0) and femoral peg (1.5; 1.0 vs. 0; 0) were significantly better in SEMAC-PD MRI than in non-SEMAC-PD MRI (P<0.05). On the other hand, there were no significant differences in the visualizations of AP, ML, and keel of the tibial components. Measurements of the femoral posterior condyle and tibial keel approached the actual length, but were not involved within the 95% confidence interval (actual length, 19.4 mm vs. 95% CI, 15.7-19.1 mm). Conclusion A significant reduction of metal artifacts was observed only around the femoral component in SEMAC-PD MRI. Despite artifact reduction, this sequence did not result in better visualization for measurement. Cureus 2023-10-01 /pmc/articles/PMC10544766/ /pubmed/37790872 http://dx.doi.org/10.7759/cureus.46338 Text en Copyright © 2023, Takahashi et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Radiology Takahashi, Tsuneari Takeshita, Katsushi Artifact Reduction Proton Density Magnetic Resonance Imaging Can Better Visualize Unicompartmental Knee Arthroplasty Components but Does Not Improve Measurement Accuracy at 3T: An In Vitro Phantom Study |
title | Artifact Reduction Proton Density Magnetic Resonance Imaging Can Better Visualize Unicompartmental Knee Arthroplasty Components but Does Not Improve Measurement Accuracy at 3T: An In Vitro Phantom Study |
title_full | Artifact Reduction Proton Density Magnetic Resonance Imaging Can Better Visualize Unicompartmental Knee Arthroplasty Components but Does Not Improve Measurement Accuracy at 3T: An In Vitro Phantom Study |
title_fullStr | Artifact Reduction Proton Density Magnetic Resonance Imaging Can Better Visualize Unicompartmental Knee Arthroplasty Components but Does Not Improve Measurement Accuracy at 3T: An In Vitro Phantom Study |
title_full_unstemmed | Artifact Reduction Proton Density Magnetic Resonance Imaging Can Better Visualize Unicompartmental Knee Arthroplasty Components but Does Not Improve Measurement Accuracy at 3T: An In Vitro Phantom Study |
title_short | Artifact Reduction Proton Density Magnetic Resonance Imaging Can Better Visualize Unicompartmental Knee Arthroplasty Components but Does Not Improve Measurement Accuracy at 3T: An In Vitro Phantom Study |
title_sort | artifact reduction proton density magnetic resonance imaging can better visualize unicompartmental knee arthroplasty components but does not improve measurement accuracy at 3t: an in vitro phantom study |
topic | Radiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544766/ https://www.ncbi.nlm.nih.gov/pubmed/37790872 http://dx.doi.org/10.7759/cureus.46338 |
work_keys_str_mv | AT takahashitsuneari artifactreductionprotondensitymagneticresonanceimagingcanbettervisualizeunicompartmentalkneearthroplastycomponentsbutdoesnotimprovemeasurementaccuracyat3taninvitrophantomstudy AT takeshitakatsushi artifactreductionprotondensitymagneticresonanceimagingcanbettervisualizeunicompartmentalkneearthroplastycomponentsbutdoesnotimprovemeasurementaccuracyat3taninvitrophantomstudy |