Cargando…
Scalable Predictions for Spatial Probit Linear Mixed Models Using Nearest Neighbor Gaussian Processes
Spatial probit generalized linear mixed models (spGLMM) with a linear fixed effect and a spatial random effect, endowed with a Gaussian Process prior, are widely used for analysis of binary spatial data. However, the canonical Bayesian implementation of this hierarchical mixed model can involve prot...
Autores principales: | Saha, Arkajyoti, Datta, Abhirup, Banerjee, Sudipto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544813/ https://www.ncbi.nlm.nih.gov/pubmed/37786782 http://dx.doi.org/10.6339/22-jds1073 |
Ejemplares similares
-
nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes
por: Weber, Lukas M., et al.
Publicado: (2023) -
A Comparison of the Spatial Linear Model to Nearest Neighbor (k-NN) Methods for Forestry Applications
por: Ver Hoef, Jay M., et al.
Publicado: (2013) -
Fault Detection and Isolation of Non-Gaussian and
Nonlinear Processes Based on Statistics Pattern Analysis and the k-Nearest Neighbor Method
por: Zhou, Zhe, et al.
Publicado: (2022) -
Lectures on the nearest neighbor method
por: Biau, Gérard, et al.
Publicado: (2015) -
Reducing CNOT count in quantum Fourier transform for the linear nearest-neighbor architecture
por: Park, Byeongyong, et al.
Publicado: (2023)