Cargando…

Adaptations of the balloon analog risk task for neuroimaging settings: a systematic review

INTRODUCTION: The Balloon Analog Risk Task (BART), a computerized behavioral paradigm, is one of the most common tools used to assess the risk-taking propensity of an individual. Since its initial behavioral version, the BART has been adapted to neuroimaging technique to explore brain networks of ri...

Descripción completa

Detalles Bibliográficos
Autores principales: Compagne, Charline, Mayer, Juliana Teti, Gabriel, Damien, Comte, Alexandre, Magnin, Eloi, Bennabi, Djamila, Tannou, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544912/
https://www.ncbi.nlm.nih.gov/pubmed/37790591
http://dx.doi.org/10.3389/fnins.2023.1237734
Descripción
Sumario:INTRODUCTION: The Balloon Analog Risk Task (BART), a computerized behavioral paradigm, is one of the most common tools used to assess the risk-taking propensity of an individual. Since its initial behavioral version, the BART has been adapted to neuroimaging technique to explore brain networks of risk-taking behavior. However, while there are a variety of paradigms adapted to neuroimaging to date, no consensus has been reached on the best paradigm with the appropriate parameters to study the brain during risk-taking assessed by the BART. In this review of the literature, we aimed to identify the most appropriate BART parameters to adapt the initial paradigm to neuroimaging and increase the reliability of this tool. METHODS: A systematic review focused on the BART versions adapted to neuroimaging was performed in accordance with PRISMA guidelines. RESULTS: A total of 105 articles with 6,879 subjects identified from the PubMed database met the inclusion criteria. The BART was adapted in four neuroimaging techniques, mostly in functional magnetic resonance imaging or electroencephalography settings. DISCUSSION: First, to adapt the BART to neuroimaging, a delay was included between each trial, the total number of inflations was reduced between 12 and 30 pumps, and the number of trials was increased between 80 and 100 balloons, enabling us to respect the recording constraints of neuroimaging. Second, explicit feedback about the balloon burst limited the decisions under ambiguity associated with the first trials. Third, employing an outcome index that provides more informative measures than the standard average pump score, along with a model incorporating an exponential monotonic increase in explosion probability and a maximum explosion probability between 50 and 75%, can yield a reliable estimation of risk profile. Additionally, enhancing participant motivation can be achieved by increasing the reward in line with the risk level and implementing payment based on their performance in the BART. Although there is no universal adaptation of the BART to neuroimaging, and depending on the objectives of a study, an adjustment of parameters optimizes its evaluation and clinical utility in assessing risk-taking.