Cargando…
DSKCA-UNet: Dynamic selective kernel channel attention for medical image segmentation
U-Net has attained immense popularity owing to its performance in medical image segmentation. However, it cannot be modeled explicitly over remote dependencies. By contrast, the transformer can effectively capture remote dependencies by leveraging the self-attention (SA) of the encoder. Although SA,...
Autores principales: | Shen, Longfeng, Wang, Qiong, Zhang, Yingjie, Qin, Fenglan, Jin, Hengjun, Zhao, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545043/ https://www.ncbi.nlm.nih.gov/pubmed/37773842 http://dx.doi.org/10.1097/MD.0000000000035328 |
Ejemplares similares
-
Unfolded deep kernel estimation-attention UNet-based retinal image segmentation
por: Radha, K., et al.
Publicado: (2023) -
Improved UNet with Attention for Medical Image Segmentation
por: AL Qurri, Ahmed, et al.
Publicado: (2023) -
Rapid identification of clinical common invasive fungi via a multi-channel real-time fluorescent polymerase chain reaction melting curve analysis
por: Wen, Xiaozi, et al.
Publicado: (2020) -
Comparison of functional dorsal attention network alterations in breast cancer survivors before and after chemotherapy
por: Shen, Chao-Yu, et al.
Publicado: (2021) -
SeUneter: Channel attentive U-Net for instance segmentation of the cervical spine MRI medical image
por: Zhang, Xiang, et al.
Publicado: (2022)