Cargando…
A topological classifier to characterize brain states: When shape matters more than variance
Despite the remarkable accuracies attained by machine learning classifiers to separate complex datasets in a supervised fashion, most of their operation falls short to provide an informed intuition about the structure of data, and, what is more important, about the phenomena being characterized by t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545107/ https://www.ncbi.nlm.nih.gov/pubmed/37782651 http://dx.doi.org/10.1371/journal.pone.0292049 |
_version_ | 1785114607940009984 |
---|---|
author | Ferrà, Aina Cecchini, Gloria Nobbe Fisas, Fritz-Pere Casacuberta, Carles Cos, Ignasi |
author_facet | Ferrà, Aina Cecchini, Gloria Nobbe Fisas, Fritz-Pere Casacuberta, Carles Cos, Ignasi |
author_sort | Ferrà, Aina |
collection | PubMed |
description | Despite the remarkable accuracies attained by machine learning classifiers to separate complex datasets in a supervised fashion, most of their operation falls short to provide an informed intuition about the structure of data, and, what is more important, about the phenomena being characterized by the given datasets. By contrast, topological data analysis (TDA) is devoted to study the shape of data clouds by means of persistence descriptors and provides a quantitative characterization of specific topological features of the dataset under scrutiny. Here we introduce a novel TDA-based classifier that works on the principle of assessing quantifiable changes on topological metrics caused by the addition of new input to a subset of data. We used this classifier with a high-dimensional electro-encephalographic (EEG) dataset recorded from eleven participants during a previous decision-making experiment in which three motivational states were induced through a manipulation of social pressure. We calculated silhouettes from persistence diagrams associated with each motivated state with a ready-made band-pass filtered version of these signals, and classified unlabeled signals according to their impact on each reference silhouette. Our results show that in addition to providing accuracies within the range of those of a nearest neighbour classifier, the TDA classifier provides formal intuition of the structure of the dataset as well as an estimate of its intrinsic dimension. Towards this end, we incorporated variance-based dimensionality reduction methods to our dataset and found that in most cases the accuracy of our TDA classifier remains essentially invariant beyond a certain dimension. |
format | Online Article Text |
id | pubmed-10545107 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-105451072023-10-03 A topological classifier to characterize brain states: When shape matters more than variance Ferrà, Aina Cecchini, Gloria Nobbe Fisas, Fritz-Pere Casacuberta, Carles Cos, Ignasi PLoS One Research Article Despite the remarkable accuracies attained by machine learning classifiers to separate complex datasets in a supervised fashion, most of their operation falls short to provide an informed intuition about the structure of data, and, what is more important, about the phenomena being characterized by the given datasets. By contrast, topological data analysis (TDA) is devoted to study the shape of data clouds by means of persistence descriptors and provides a quantitative characterization of specific topological features of the dataset under scrutiny. Here we introduce a novel TDA-based classifier that works on the principle of assessing quantifiable changes on topological metrics caused by the addition of new input to a subset of data. We used this classifier with a high-dimensional electro-encephalographic (EEG) dataset recorded from eleven participants during a previous decision-making experiment in which three motivational states were induced through a manipulation of social pressure. We calculated silhouettes from persistence diagrams associated with each motivated state with a ready-made band-pass filtered version of these signals, and classified unlabeled signals according to their impact on each reference silhouette. Our results show that in addition to providing accuracies within the range of those of a nearest neighbour classifier, the TDA classifier provides formal intuition of the structure of the dataset as well as an estimate of its intrinsic dimension. Towards this end, we incorporated variance-based dimensionality reduction methods to our dataset and found that in most cases the accuracy of our TDA classifier remains essentially invariant beyond a certain dimension. Public Library of Science 2023-10-02 /pmc/articles/PMC10545107/ /pubmed/37782651 http://dx.doi.org/10.1371/journal.pone.0292049 Text en © 2023 Ferrà et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ferrà, Aina Cecchini, Gloria Nobbe Fisas, Fritz-Pere Casacuberta, Carles Cos, Ignasi A topological classifier to characterize brain states: When shape matters more than variance |
title | A topological classifier to characterize brain states: When shape matters more than variance |
title_full | A topological classifier to characterize brain states: When shape matters more than variance |
title_fullStr | A topological classifier to characterize brain states: When shape matters more than variance |
title_full_unstemmed | A topological classifier to characterize brain states: When shape matters more than variance |
title_short | A topological classifier to characterize brain states: When shape matters more than variance |
title_sort | topological classifier to characterize brain states: when shape matters more than variance |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545107/ https://www.ncbi.nlm.nih.gov/pubmed/37782651 http://dx.doi.org/10.1371/journal.pone.0292049 |
work_keys_str_mv | AT ferraaina atopologicalclassifiertocharacterizebrainstateswhenshapemattersmorethanvariance AT cecchinigloria atopologicalclassifiertocharacterizebrainstateswhenshapemattersmorethanvariance AT nobbefisasfritzpere atopologicalclassifiertocharacterizebrainstateswhenshapemattersmorethanvariance AT casacubertacarles atopologicalclassifiertocharacterizebrainstateswhenshapemattersmorethanvariance AT cosignasi atopologicalclassifiertocharacterizebrainstateswhenshapemattersmorethanvariance AT ferraaina topologicalclassifiertocharacterizebrainstateswhenshapemattersmorethanvariance AT cecchinigloria topologicalclassifiertocharacterizebrainstateswhenshapemattersmorethanvariance AT nobbefisasfritzpere topologicalclassifiertocharacterizebrainstateswhenshapemattersmorethanvariance AT casacubertacarles topologicalclassifiertocharacterizebrainstateswhenshapemattersmorethanvariance AT cosignasi topologicalclassifiertocharacterizebrainstateswhenshapemattersmorethanvariance |