Cargando…
Transitional zone prostate cancer: Performance of texture-based machine learning and image-based deep learning
This study is aimed to explore the performance of texture-based machine learning and image-based deep-learning for enhancing detection of Transitional-zone prostate cancer (TZPCa) in the background of benign prostatic hyperplasia (BPH), using a one-to-one correlation between prostatectomy-based path...
Autores principales: | Lee, Myoung Seok, Kim, Young Jae, Moon, Min Hoan, Kim, Kwang Gi, Park, Jeong Hwan, Sung, Chang Kyu, Jeong, Hyeon, Son, Hwancheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545268/ https://www.ncbi.nlm.nih.gov/pubmed/37773806 http://dx.doi.org/10.1097/MD.0000000000035039 |
Ejemplares similares
-
Utilization of virtual low-keV monoenergetic images generated using dual-layer spectral detector computed tomography for the assessment of peritoneal seeding from ovarian cancer
por: Kim, Taek Min, et al.
Publicado: (2020) -
Heterogeneity by global and textural feature analysis in F-18 FP-CIT brain PET images for diagnosis of Parkinson's disease
por: Yoon, Hyun Jin, et al.
Publicado: (2021) -
Evaluation of a deep learning-based computer-aided detection algorithm on chest radiographs: Case–control study
por: Choi, Soo Yun, et al.
Publicado: (2021) -
Clinical value of texture analysis in differentiation of urothelial carcinoma based on multiphase computed tomography images
por: Wang, Zihua, et al.
Publicado: (2020) -
Ultrasonographic morphological characteristics determined using a deep learning-based computer-aided diagnostic system of breast cancer
por: Kim, Young Seon, et al.
Publicado: (2022)