Cargando…
A Multiscale Point-Supervised Network for Counting Maize Tassels in the Wild
Accurate counting of maize tassels is essential for monitoring crop growth and estimating crop yield. Recently, deep-learning-based object detection methods have been used for this purpose, where plant counts are estimated from the number of bounding boxes detected. However, these methods suffer fro...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545326/ https://www.ncbi.nlm.nih.gov/pubmed/37791249 http://dx.doi.org/10.34133/plantphenomics.0100 |
Sumario: | Accurate counting of maize tassels is essential for monitoring crop growth and estimating crop yield. Recently, deep-learning-based object detection methods have been used for this purpose, where plant counts are estimated from the number of bounding boxes detected. However, these methods suffer from 2 issues: (a) The scales of maize tassels vary because of image capture from varying distances and crop growth stage; and (b) tassel areas tend to be affected by occlusions or complex backgrounds, making the detection inefficient. In this paper, we propose a multiscale lite attention enhancement network (MLAENet) that uses only point-level annotations (i.e., objects labeled with points) to count maize tassels in the wild. Specifically, the proposed method includes a new multicolumn lite feature extraction module that generates a scale-dependent density map by exploiting multiple dilated convolutions with different rates, capturing rich contextual information at different scales more effectively. In addition, a multifeature enhancement module that integrates an attention strategy is proposed to enable the model to distinguish between tassel areas and their complex backgrounds. Finally, a new up-sampling module, UP-Block, is designed to improve the quality of the estimated density map by automatically suppressing the gridding effect during the up-sampling process. Extensive experiments on 2 publicly available tassel-counting datasets, maize tassels counting and maize tassels counting from unmanned aerial vehicle, demonstrate that the proposed MLAENet achieves marked advantages in counting accuracy and inference speed compared to state-of-the-art methods. The model is publicly available at https://github.com/ShiratsuyuShigure/MLAENet-pytorch/tree/main. |
---|