Cargando…
A Multiscale Point-Supervised Network for Counting Maize Tassels in the Wild
Accurate counting of maize tassels is essential for monitoring crop growth and estimating crop yield. Recently, deep-learning-based object detection methods have been used for this purpose, where plant counts are estimated from the number of bounding boxes detected. However, these methods suffer fro...
Autores principales: | Zheng, Haoyu, Fan, Xijian, Bo, Weihao, Yang, Xubing, Tjahjadi, Tardi, Jin, Shichao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545326/ https://www.ncbi.nlm.nih.gov/pubmed/37791249 http://dx.doi.org/10.34133/plantphenomics.0100 |
Ejemplares similares
-
TasselNet: counting maize tassels in the wild via local counts regression network
por: Lu, Hao, et al.
Publicado: (2017) -
A Segmentation-Guided Deep Learning Framework for Leaf Counting
por: Fan, Xijian, et al.
Publicado: (2022) -
From Laboratory to Field: Unsupervised Domain Adaptation for Plant Disease Recognition in the Wild
por: Wu, Xinlu, et al.
Publicado: (2023) -
TasselLFANet: a novel lightweight multi-branch feature aggregation neural network for high-throughput image-based maize tassels detection and counting
por: Yu, Zhenghong, et al.
Publicado: (2023) -
TasselGAN: An Application of the Generative Adversarial Model for Creating Field-Based Maize Tassel Data
por: Shete, Snehal, et al.
Publicado: (2020)