Cargando…

An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases

AIMS: Artificial intelligence (AI) techniques have been proposed for automating analysis of short-axis (SAX) cine cardiac magnetic resonance (CMR), but no CMR analysis tool exists to automatically analyse large (unstructured) clinical CMR datasets. We develop and validate a robust AI tool for start-...

Descripción completa

Detalles Bibliográficos
Autores principales: Mariscal-Harana, Jorge, Asher, Clint, Vergani, Vittoria, Rizvi, Maleeha, Keehn, Louise, Kim, Raymond J, Judd, Robert M, Petersen, Steffen E, Razavi, Reza, King, Andrew P, Ruijsink, Bram, Puyol-Antón, Esther
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545512/
https://www.ncbi.nlm.nih.gov/pubmed/37794871
http://dx.doi.org/10.1093/ehjdh/ztad044
_version_ 1785114687357059072
author Mariscal-Harana, Jorge
Asher, Clint
Vergani, Vittoria
Rizvi, Maleeha
Keehn, Louise
Kim, Raymond J
Judd, Robert M
Petersen, Steffen E
Razavi, Reza
King, Andrew P
Ruijsink, Bram
Puyol-Antón, Esther
author_facet Mariscal-Harana, Jorge
Asher, Clint
Vergani, Vittoria
Rizvi, Maleeha
Keehn, Louise
Kim, Raymond J
Judd, Robert M
Petersen, Steffen E
Razavi, Reza
King, Andrew P
Ruijsink, Bram
Puyol-Antón, Esther
author_sort Mariscal-Harana, Jorge
collection PubMed
description AIMS: Artificial intelligence (AI) techniques have been proposed for automating analysis of short-axis (SAX) cine cardiac magnetic resonance (CMR), but no CMR analysis tool exists to automatically analyse large (unstructured) clinical CMR datasets. We develop and validate a robust AI tool for start-to-end automatic quantification of cardiac function from SAX cine CMR in large clinical databases. METHODS AND RESULTS: Our pipeline for processing and analysing CMR databases includes automated steps to identify the correct data, robust image pre-processing, an AI algorithm for biventricular segmentation of SAX CMR and estimation of functional biomarkers, and automated post-analysis quality control to detect and correct errors. The segmentation algorithm was trained on 2793 CMR scans from two NHS hospitals and validated on additional cases from this dataset (n = 414) and five external datasets (n = 6888), including scans of patients with a range of diseases acquired at 12 different centres using CMR scanners from all major vendors. Median absolute errors in cardiac biomarkers were within the range of inter-observer variability: <8.4 mL (left ventricle volume), <9.2 mL (right ventricle volume), <13.3 g (left ventricular mass), and <5.9% (ejection fraction) across all datasets. Stratification of cases according to phenotypes of cardiac disease and scanner vendors showed good performance across all groups. CONCLUSION: We show that our proposed tool, which combines image pre-processing steps, a domain-generalizable AI algorithm trained on a large-scale multi-domain CMR dataset and quality control steps, allows robust analysis of (clinical or research) databases from multiple centres, vendors, and cardiac diseases. This enables translation of our tool for use in fully automated processing of large multi-centre databases.
format Online
Article
Text
id pubmed-10545512
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-105455122023-10-04 An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases Mariscal-Harana, Jorge Asher, Clint Vergani, Vittoria Rizvi, Maleeha Keehn, Louise Kim, Raymond J Judd, Robert M Petersen, Steffen E Razavi, Reza King, Andrew P Ruijsink, Bram Puyol-Antón, Esther Eur Heart J Digit Health Original Article AIMS: Artificial intelligence (AI) techniques have been proposed for automating analysis of short-axis (SAX) cine cardiac magnetic resonance (CMR), but no CMR analysis tool exists to automatically analyse large (unstructured) clinical CMR datasets. We develop and validate a robust AI tool for start-to-end automatic quantification of cardiac function from SAX cine CMR in large clinical databases. METHODS AND RESULTS: Our pipeline for processing and analysing CMR databases includes automated steps to identify the correct data, robust image pre-processing, an AI algorithm for biventricular segmentation of SAX CMR and estimation of functional biomarkers, and automated post-analysis quality control to detect and correct errors. The segmentation algorithm was trained on 2793 CMR scans from two NHS hospitals and validated on additional cases from this dataset (n = 414) and five external datasets (n = 6888), including scans of patients with a range of diseases acquired at 12 different centres using CMR scanners from all major vendors. Median absolute errors in cardiac biomarkers were within the range of inter-observer variability: <8.4 mL (left ventricle volume), <9.2 mL (right ventricle volume), <13.3 g (left ventricular mass), and <5.9% (ejection fraction) across all datasets. Stratification of cases according to phenotypes of cardiac disease and scanner vendors showed good performance across all groups. CONCLUSION: We show that our proposed tool, which combines image pre-processing steps, a domain-generalizable AI algorithm trained on a large-scale multi-domain CMR dataset and quality control steps, allows robust analysis of (clinical or research) databases from multiple centres, vendors, and cardiac diseases. This enables translation of our tool for use in fully automated processing of large multi-centre databases. Oxford University Press 2023-07-13 /pmc/articles/PMC10545512/ /pubmed/37794871 http://dx.doi.org/10.1093/ehjdh/ztad044 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Mariscal-Harana, Jorge
Asher, Clint
Vergani, Vittoria
Rizvi, Maleeha
Keehn, Louise
Kim, Raymond J
Judd, Robert M
Petersen, Steffen E
Razavi, Reza
King, Andrew P
Ruijsink, Bram
Puyol-Antón, Esther
An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
title An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
title_full An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
title_fullStr An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
title_full_unstemmed An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
title_short An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
title_sort artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545512/
https://www.ncbi.nlm.nih.gov/pubmed/37794871
http://dx.doi.org/10.1093/ehjdh/ztad044
work_keys_str_mv AT mariscalharanajorge anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT asherclint anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT verganivittoria anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT rizvimaleeha anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT keehnlouise anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT kimraymondj anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT juddrobertm anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT petersensteffene anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT razavireza anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT kingandrewp anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT ruijsinkbram anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT puyolantonesther anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT mariscalharanajorge artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT asherclint artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT verganivittoria artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT rizvimaleeha artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT keehnlouise artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT kimraymondj artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT juddrobertm artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT petersensteffene artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT razavireza artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT kingandrewp artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT ruijsinkbram artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases
AT puyolantonesther artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases