Cargando…
An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases
AIMS: Artificial intelligence (AI) techniques have been proposed for automating analysis of short-axis (SAX) cine cardiac magnetic resonance (CMR), but no CMR analysis tool exists to automatically analyse large (unstructured) clinical CMR datasets. We develop and validate a robust AI tool for start-...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545512/ https://www.ncbi.nlm.nih.gov/pubmed/37794871 http://dx.doi.org/10.1093/ehjdh/ztad044 |
_version_ | 1785114687357059072 |
---|---|
author | Mariscal-Harana, Jorge Asher, Clint Vergani, Vittoria Rizvi, Maleeha Keehn, Louise Kim, Raymond J Judd, Robert M Petersen, Steffen E Razavi, Reza King, Andrew P Ruijsink, Bram Puyol-Antón, Esther |
author_facet | Mariscal-Harana, Jorge Asher, Clint Vergani, Vittoria Rizvi, Maleeha Keehn, Louise Kim, Raymond J Judd, Robert M Petersen, Steffen E Razavi, Reza King, Andrew P Ruijsink, Bram Puyol-Antón, Esther |
author_sort | Mariscal-Harana, Jorge |
collection | PubMed |
description | AIMS: Artificial intelligence (AI) techniques have been proposed for automating analysis of short-axis (SAX) cine cardiac magnetic resonance (CMR), but no CMR analysis tool exists to automatically analyse large (unstructured) clinical CMR datasets. We develop and validate a robust AI tool for start-to-end automatic quantification of cardiac function from SAX cine CMR in large clinical databases. METHODS AND RESULTS: Our pipeline for processing and analysing CMR databases includes automated steps to identify the correct data, robust image pre-processing, an AI algorithm for biventricular segmentation of SAX CMR and estimation of functional biomarkers, and automated post-analysis quality control to detect and correct errors. The segmentation algorithm was trained on 2793 CMR scans from two NHS hospitals and validated on additional cases from this dataset (n = 414) and five external datasets (n = 6888), including scans of patients with a range of diseases acquired at 12 different centres using CMR scanners from all major vendors. Median absolute errors in cardiac biomarkers were within the range of inter-observer variability: <8.4 mL (left ventricle volume), <9.2 mL (right ventricle volume), <13.3 g (left ventricular mass), and <5.9% (ejection fraction) across all datasets. Stratification of cases according to phenotypes of cardiac disease and scanner vendors showed good performance across all groups. CONCLUSION: We show that our proposed tool, which combines image pre-processing steps, a domain-generalizable AI algorithm trained on a large-scale multi-domain CMR dataset and quality control steps, allows robust analysis of (clinical or research) databases from multiple centres, vendors, and cardiac diseases. This enables translation of our tool for use in fully automated processing of large multi-centre databases. |
format | Online Article Text |
id | pubmed-10545512 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-105455122023-10-04 An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases Mariscal-Harana, Jorge Asher, Clint Vergani, Vittoria Rizvi, Maleeha Keehn, Louise Kim, Raymond J Judd, Robert M Petersen, Steffen E Razavi, Reza King, Andrew P Ruijsink, Bram Puyol-Antón, Esther Eur Heart J Digit Health Original Article AIMS: Artificial intelligence (AI) techniques have been proposed for automating analysis of short-axis (SAX) cine cardiac magnetic resonance (CMR), but no CMR analysis tool exists to automatically analyse large (unstructured) clinical CMR datasets. We develop and validate a robust AI tool for start-to-end automatic quantification of cardiac function from SAX cine CMR in large clinical databases. METHODS AND RESULTS: Our pipeline for processing and analysing CMR databases includes automated steps to identify the correct data, robust image pre-processing, an AI algorithm for biventricular segmentation of SAX CMR and estimation of functional biomarkers, and automated post-analysis quality control to detect and correct errors. The segmentation algorithm was trained on 2793 CMR scans from two NHS hospitals and validated on additional cases from this dataset (n = 414) and five external datasets (n = 6888), including scans of patients with a range of diseases acquired at 12 different centres using CMR scanners from all major vendors. Median absolute errors in cardiac biomarkers were within the range of inter-observer variability: <8.4 mL (left ventricle volume), <9.2 mL (right ventricle volume), <13.3 g (left ventricular mass), and <5.9% (ejection fraction) across all datasets. Stratification of cases according to phenotypes of cardiac disease and scanner vendors showed good performance across all groups. CONCLUSION: We show that our proposed tool, which combines image pre-processing steps, a domain-generalizable AI algorithm trained on a large-scale multi-domain CMR dataset and quality control steps, allows robust analysis of (clinical or research) databases from multiple centres, vendors, and cardiac diseases. This enables translation of our tool for use in fully automated processing of large multi-centre databases. Oxford University Press 2023-07-13 /pmc/articles/PMC10545512/ /pubmed/37794871 http://dx.doi.org/10.1093/ehjdh/ztad044 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Mariscal-Harana, Jorge Asher, Clint Vergani, Vittoria Rizvi, Maleeha Keehn, Louise Kim, Raymond J Judd, Robert M Petersen, Steffen E Razavi, Reza King, Andrew P Ruijsink, Bram Puyol-Antón, Esther An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases |
title | An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases |
title_full | An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases |
title_fullStr | An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases |
title_full_unstemmed | An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases |
title_short | An artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases |
title_sort | artificial intelligence tool for automated analysis of large-scale unstructured clinical cine cardiac magnetic resonance databases |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545512/ https://www.ncbi.nlm.nih.gov/pubmed/37794871 http://dx.doi.org/10.1093/ehjdh/ztad044 |
work_keys_str_mv | AT mariscalharanajorge anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT asherclint anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT verganivittoria anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT rizvimaleeha anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT keehnlouise anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT kimraymondj anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT juddrobertm anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT petersensteffene anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT razavireza anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT kingandrewp anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT ruijsinkbram anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT puyolantonesther anartificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT mariscalharanajorge artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT asherclint artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT verganivittoria artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT rizvimaleeha artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT keehnlouise artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT kimraymondj artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT juddrobertm artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT petersensteffene artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT razavireza artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT kingandrewp artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT ruijsinkbram artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases AT puyolantonesther artificialintelligencetoolforautomatedanalysisoflargescaleunstructuredclinicalcinecardiacmagneticresonancedatabases |