Cargando…
Dissociating representations of affect and motion in visual cortices
While a delicious dessert being presented to us may elicit strong feelings of happiness and excitement, the same treat falling slowly away can lead to sadness and disappointment. Our emotional response to the item depends on its visual motion direction. Despite this importance, it remains unclear wh...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545642/ https://www.ncbi.nlm.nih.gov/pubmed/37526901 http://dx.doi.org/10.3758/s13415-023-01115-2 |
Sumario: | While a delicious dessert being presented to us may elicit strong feelings of happiness and excitement, the same treat falling slowly away can lead to sadness and disappointment. Our emotional response to the item depends on its visual motion direction. Despite this importance, it remains unclear whether (and how) cortical areas devoted to decoding motion direction represents or integrates emotion with perceived motion direction. Motion-selective visual area V5/MT+ sits, both functionally and anatomically, at the nexus of dorsal and ventral visual streams. These pathways, however, differ in how they are modulated by emotional cues. The current study was designed to disentangle how emotion and motion perception interact, as well as use emotion-dependent modulation of visual cortices to understand the relation of V5/MT+ to canonical processing streams. During functional magnetic resonance imaging (fMRI), approaching, receding, or static motion after-effects (MAEs) were induced on stationary positive, negative, and neutral stimuli. An independent localizer scan was conducted to identify the visual-motion area V5/MT+. Through univariate and multivariate analyses, we demonstrated that emotion representations in V5/MT+ share a more similar response profile to that observed in ventral visual than dorsal, visual structures. Specifically, V5/MT+ and ventral structures were sensitive to the emotional content of visual stimuli, whereas dorsal visual structures were not. Overall, this work highlights the critical role of V5/MT+ in the representation and processing of visually acquired emotional content. It further suggests a role for this region in utilizing affectively salient visual information to augment motion perception of biologically relevant stimuli. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.3758/s13415-023-01115-2. |
---|