Cargando…
ITRPCA: a new model for computational drug repositioning based on improved tensor robust principal component analysis
Background: Drug repositioning is considered a promising drug development strategy with the goal of discovering new uses for existing drugs. Compared with the experimental screening for drug discovery, computational drug repositioning offers lower cost and higher efficiency and, hence, has become a...
Autores principales: | Yang, Mengyun, Yang, Bin, Duan, Guihua, Wang, Jianxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545866/ https://www.ncbi.nlm.nih.gov/pubmed/37795241 http://dx.doi.org/10.3389/fgene.2023.1271311 |
Ejemplares similares
-
Drug repositioning based on bounded nuclear norm regularization
por: Yang, Mengyun, et al.
Publicado: (2019) -
Drug repositioning for esophageal squamous cell carcinoma
por: Bennett, Adam N., et al.
Publicado: (2022) -
Incorporating Prior Knowledge of Principal Components in Genomic Prediction
por: Hosseini-Vardanjani, Sayed M., et al.
Publicado: (2018) -
NTD-DR: Nonnegative tensor decomposition for drug repositioning
por: Jamali, Ali Akbar, et al.
Publicado: (2022) -
Predicting Drug–Gene–Disease Associations by Tensor Decomposition for Network-Based Computational Drug Repositioning
por: Kim, Yoonbee, et al.
Publicado: (2023)