Cargando…
Single-cell assignment using multiple-adversarial domain adaptation network with large-scale references
The rapid accumulation of single-cell RNA-seq data has provided rich resources to characterize various human cell populations. However, achieving accurate cell-type annotation using public references presents challenges due to inconsistent annotations, batch effects, and rare cell types. Here, we in...
Autores principales: | Ren, Pengfei, Shi, Xiaoying, Yu, Zhiguang, Dong, Xin, Ding, Xuanxin, Wang, Jin, Sun, Liangdong, Yan, Yilv, Hu, Junjie, Zhang, Peng, Chen, Qianming, Zhang, Jing, Li, Taiwen, Wang, Chenfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545911/ https://www.ncbi.nlm.nih.gov/pubmed/37751689 http://dx.doi.org/10.1016/j.crmeth.2023.100577 |
Ejemplares similares
-
HUSCH: an integrated single-cell transcriptome atlas for human tissue gene expression visualization and analyses
por: Shi, Xiaoying, et al.
Publicado: (2022) -
TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment
por: Sun, Dongqing, et al.
Publicado: (2020) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Simultaneously Improve Transferability and Discriminability for Adversarial Domain Adaptation
por: Xiao, Ting, et al.
Publicado: (2021) -
Adversarial and Random Transformations for Robust Domain Adaptation and Generalization
por: Xiao, Liang, et al.
Publicado: (2023)