Cargando…
Machine learning for cross-scale microscopy of viruses
Despite advances in virological sciences and antiviral research, viruses continue to emerge, circulate, and threaten public health. We still lack a comprehensive understanding of how cells and individuals remain susceptible to infectious agents. This deficiency is in part due to the complexity of vi...
Autores principales: | Petkidis, Anthony, Andriasyan, Vardan, Greber, Urs F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545915/ https://www.ncbi.nlm.nih.gov/pubmed/37751685 http://dx.doi.org/10.1016/j.crmeth.2023.100557 |
Ejemplares similares
-
Label-free microscopy for virus infections
por: Petkidis, Anthony, et al.
Publicado: (2023) -
Microscopy deep learning predicts virus infections and reveals mechanics of lytic-infected cells
por: Andriasyan, Vardan, et al.
Publicado: (2021) -
Concepts in Light Microscopy of Viruses
por: Witte, Robert, et al.
Publicado: (2018) -
Label-Free Digital Holo-tomographic Microscopy Reveals Virus-Induced Cytopathic Effects in Live Cells
por: Yakimovich, Artur, et al.
Publicado: (2018) -
High-content, arrayed compound screens with rhinovirus, influenza A virus and herpes simplex virus infections
por: Olszewski, Dominik, et al.
Publicado: (2022)