Cargando…
Structure preserving adversarial generation of labeled training samples for single-cell segmentation
We introduce a generative data augmentation strategy to improve the accuracy of instance segmentation of microscopy data for complex tissue structures. Our pipeline uses regular and conditional generative adversarial networks (GANs) for image-to-image translation to construct synthetic microscopy im...
Autores principales: | Tasnadi, Ervin, Sliz-Nagy, Alex, Horvath, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545934/ https://www.ncbi.nlm.nih.gov/pubmed/37725984 http://dx.doi.org/10.1016/j.crmeth.2023.100592 |
Ejemplares similares
-
3D-Cell-Annotator: an open-source active surface tool for single-cell segmentation in 3D microscopy images
por: Tasnadi, Ervin A, et al.
Publicado: (2020) -
Adversarially Training MCMC with Non-Volume-Preserving Flows
por: Liu, Shaofan, et al.
Publicado: (2022) -
Software tools for 3D nuclei segmentation and quantitative analysis in multicellular aggregates
por: Piccinini, Filippo, et al.
Publicado: (2020) -
Generative adversarial networks based skin lesion segmentation
por: Innani, Shubham, et al.
Publicado: (2023) -
Path Generator with Unpaired Samples Employing Generative Adversarial Networks
por: Maldonado-Romo, Javier, et al.
Publicado: (2022)