Cargando…

Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing

Non-human primates (NHPs) are the closest animal model to humans; thus, gene engineering technology in these species holds great promise for the elucidation of higher brain functions and human disease models. Knockin (KI) gene targeting is a versatile approach to modify gene(s) of interest; however,...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoshimatsu, Sho, Okahara, Junko, Yoshie, Junko, Igarashi, Yoko, Nakajima, Ryusuke, Sanosaka, Tsukasa, Qian, Emi, Sato, Tsukika, Kobayashi, Hiroya, Morimoto, Satoru, Kishi, Noriyuki, Pillis, Devin M., Malik, Punam, Noce, Toshiaki, Okano, Hideyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545943/
https://www.ncbi.nlm.nih.gov/pubmed/37714158
http://dx.doi.org/10.1016/j.crmeth.2023.100590
_version_ 1785114772299055104
author Yoshimatsu, Sho
Okahara, Junko
Yoshie, Junko
Igarashi, Yoko
Nakajima, Ryusuke
Sanosaka, Tsukasa
Qian, Emi
Sato, Tsukika
Kobayashi, Hiroya
Morimoto, Satoru
Kishi, Noriyuki
Pillis, Devin M.
Malik, Punam
Noce, Toshiaki
Okano, Hideyuki
author_facet Yoshimatsu, Sho
Okahara, Junko
Yoshie, Junko
Igarashi, Yoko
Nakajima, Ryusuke
Sanosaka, Tsukasa
Qian, Emi
Sato, Tsukika
Kobayashi, Hiroya
Morimoto, Satoru
Kishi, Noriyuki
Pillis, Devin M.
Malik, Punam
Noce, Toshiaki
Okano, Hideyuki
author_sort Yoshimatsu, Sho
collection PubMed
description Non-human primates (NHPs) are the closest animal model to humans; thus, gene engineering technology in these species holds great promise for the elucidation of higher brain functions and human disease models. Knockin (KI) gene targeting is a versatile approach to modify gene(s) of interest; however, it generally suffers from the low efficiency of homology-directed repair (HDR) in mammalian cells, especially in non-expressed gene loci. In the current study, we generated a tyrosine hydroxylase (TH)-2A-Cre KI model of the common marmoset monkey (marmoset; Callithrix jacchus) using an HDR-biased CRISPR-Cas9 genome editing approach using Cas9-DN1S and RAD51. This model should enable labeling and modification of a specific neuronal lineage using the Cre-loxP system. Collectively, the current study paves the way for versatile gene engineering in NHPs, which may be a significant step toward further biomedical and preclinical applications.
format Online
Article
Text
id pubmed-10545943
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-105459432023-10-04 Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing Yoshimatsu, Sho Okahara, Junko Yoshie, Junko Igarashi, Yoko Nakajima, Ryusuke Sanosaka, Tsukasa Qian, Emi Sato, Tsukika Kobayashi, Hiroya Morimoto, Satoru Kishi, Noriyuki Pillis, Devin M. Malik, Punam Noce, Toshiaki Okano, Hideyuki Cell Rep Methods Report Non-human primates (NHPs) are the closest animal model to humans; thus, gene engineering technology in these species holds great promise for the elucidation of higher brain functions and human disease models. Knockin (KI) gene targeting is a versatile approach to modify gene(s) of interest; however, it generally suffers from the low efficiency of homology-directed repair (HDR) in mammalian cells, especially in non-expressed gene loci. In the current study, we generated a tyrosine hydroxylase (TH)-2A-Cre KI model of the common marmoset monkey (marmoset; Callithrix jacchus) using an HDR-biased CRISPR-Cas9 genome editing approach using Cas9-DN1S and RAD51. This model should enable labeling and modification of a specific neuronal lineage using the Cre-loxP system. Collectively, the current study paves the way for versatile gene engineering in NHPs, which may be a significant step toward further biomedical and preclinical applications. Elsevier 2023-09-14 /pmc/articles/PMC10545943/ /pubmed/37714158 http://dx.doi.org/10.1016/j.crmeth.2023.100590 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Report
Yoshimatsu, Sho
Okahara, Junko
Yoshie, Junko
Igarashi, Yoko
Nakajima, Ryusuke
Sanosaka, Tsukasa
Qian, Emi
Sato, Tsukika
Kobayashi, Hiroya
Morimoto, Satoru
Kishi, Noriyuki
Pillis, Devin M.
Malik, Punam
Noce, Toshiaki
Okano, Hideyuki
Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing
title Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing
title_full Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing
title_fullStr Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing
title_full_unstemmed Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing
title_short Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing
title_sort generation of a tyrosine hydroxylase-2a-cre knockin non-human primate model by homology-directed-repair-biased crispr genome editing
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545943/
https://www.ncbi.nlm.nih.gov/pubmed/37714158
http://dx.doi.org/10.1016/j.crmeth.2023.100590
work_keys_str_mv AT yoshimatsusho generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT okaharajunko generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT yoshiejunko generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT igarashiyoko generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT nakajimaryusuke generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT sanosakatsukasa generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT qianemi generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT satotsukika generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT kobayashihiroya generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT morimotosatoru generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT kishinoriyuki generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT pillisdevinm generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT malikpunam generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT nocetoshiaki generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting
AT okanohideyuki generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting