Cargando…
Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing
Non-human primates (NHPs) are the closest animal model to humans; thus, gene engineering technology in these species holds great promise for the elucidation of higher brain functions and human disease models. Knockin (KI) gene targeting is a versatile approach to modify gene(s) of interest; however,...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545943/ https://www.ncbi.nlm.nih.gov/pubmed/37714158 http://dx.doi.org/10.1016/j.crmeth.2023.100590 |
_version_ | 1785114772299055104 |
---|---|
author | Yoshimatsu, Sho Okahara, Junko Yoshie, Junko Igarashi, Yoko Nakajima, Ryusuke Sanosaka, Tsukasa Qian, Emi Sato, Tsukika Kobayashi, Hiroya Morimoto, Satoru Kishi, Noriyuki Pillis, Devin M. Malik, Punam Noce, Toshiaki Okano, Hideyuki |
author_facet | Yoshimatsu, Sho Okahara, Junko Yoshie, Junko Igarashi, Yoko Nakajima, Ryusuke Sanosaka, Tsukasa Qian, Emi Sato, Tsukika Kobayashi, Hiroya Morimoto, Satoru Kishi, Noriyuki Pillis, Devin M. Malik, Punam Noce, Toshiaki Okano, Hideyuki |
author_sort | Yoshimatsu, Sho |
collection | PubMed |
description | Non-human primates (NHPs) are the closest animal model to humans; thus, gene engineering technology in these species holds great promise for the elucidation of higher brain functions and human disease models. Knockin (KI) gene targeting is a versatile approach to modify gene(s) of interest; however, it generally suffers from the low efficiency of homology-directed repair (HDR) in mammalian cells, especially in non-expressed gene loci. In the current study, we generated a tyrosine hydroxylase (TH)-2A-Cre KI model of the common marmoset monkey (marmoset; Callithrix jacchus) using an HDR-biased CRISPR-Cas9 genome editing approach using Cas9-DN1S and RAD51. This model should enable labeling and modification of a specific neuronal lineage using the Cre-loxP system. Collectively, the current study paves the way for versatile gene engineering in NHPs, which may be a significant step toward further biomedical and preclinical applications. |
format | Online Article Text |
id | pubmed-10545943 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-105459432023-10-04 Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing Yoshimatsu, Sho Okahara, Junko Yoshie, Junko Igarashi, Yoko Nakajima, Ryusuke Sanosaka, Tsukasa Qian, Emi Sato, Tsukika Kobayashi, Hiroya Morimoto, Satoru Kishi, Noriyuki Pillis, Devin M. Malik, Punam Noce, Toshiaki Okano, Hideyuki Cell Rep Methods Report Non-human primates (NHPs) are the closest animal model to humans; thus, gene engineering technology in these species holds great promise for the elucidation of higher brain functions and human disease models. Knockin (KI) gene targeting is a versatile approach to modify gene(s) of interest; however, it generally suffers from the low efficiency of homology-directed repair (HDR) in mammalian cells, especially in non-expressed gene loci. In the current study, we generated a tyrosine hydroxylase (TH)-2A-Cre KI model of the common marmoset monkey (marmoset; Callithrix jacchus) using an HDR-biased CRISPR-Cas9 genome editing approach using Cas9-DN1S and RAD51. This model should enable labeling and modification of a specific neuronal lineage using the Cre-loxP system. Collectively, the current study paves the way for versatile gene engineering in NHPs, which may be a significant step toward further biomedical and preclinical applications. Elsevier 2023-09-14 /pmc/articles/PMC10545943/ /pubmed/37714158 http://dx.doi.org/10.1016/j.crmeth.2023.100590 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Report Yoshimatsu, Sho Okahara, Junko Yoshie, Junko Igarashi, Yoko Nakajima, Ryusuke Sanosaka, Tsukasa Qian, Emi Sato, Tsukika Kobayashi, Hiroya Morimoto, Satoru Kishi, Noriyuki Pillis, Devin M. Malik, Punam Noce, Toshiaki Okano, Hideyuki Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing |
title | Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing |
title_full | Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing |
title_fullStr | Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing |
title_full_unstemmed | Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing |
title_short | Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing |
title_sort | generation of a tyrosine hydroxylase-2a-cre knockin non-human primate model by homology-directed-repair-biased crispr genome editing |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545943/ https://www.ncbi.nlm.nih.gov/pubmed/37714158 http://dx.doi.org/10.1016/j.crmeth.2023.100590 |
work_keys_str_mv | AT yoshimatsusho generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT okaharajunko generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT yoshiejunko generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT igarashiyoko generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT nakajimaryusuke generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT sanosakatsukasa generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT qianemi generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT satotsukika generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT kobayashihiroya generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT morimotosatoru generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT kishinoriyuki generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT pillisdevinm generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT malikpunam generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT nocetoshiaki generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting AT okanohideyuki generationofatyrosinehydroxylase2acreknockinnonhumanprimatemodelbyhomologydirectedrepairbiasedcrisprgenomeediting |