Cargando…
Explainable deep learning in plant phenotyping
The increasing human population and variable weather conditions, due to climate change, pose a threat to the world's food security. To improve global food security, we need to provide breeders with tools to develop crop cultivars that are more resilient to extreme weather conditions and provide...
Autores principales: | Mostafa, Sakib, Mondal, Debajyoti, Panjvani, Karim, Kochian, Leon, Stavness, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546035/ https://www.ncbi.nlm.nih.gov/pubmed/37795496 http://dx.doi.org/10.3389/frai.2023.1203546 |
Ejemplares similares
-
Leveraging Guided Backpropagation to Select Convolutional Neural Networks for Plant Classification
por: Mostafa, Sakib, et al.
Publicado: (2022) -
Editorial: Computer vision in plant phenotyping and agriculture
por: Stavness, Ian, et al.
Publicado: (2023) -
Comparing Deep Learning Approaches for Understanding Genotype × Phenotype Interactions in Biomass Sorghum
por: Zhang, Zeyu, et al.
Publicado: (2022) -
Predictive keywords: Using machine learning to explain document characteristics
por: Kyröläinen, Aki-Juhani, et al.
Publicado: (2023) -
Integrated Evolutionary Learning: An Artificial Intelligence Approach to Joint Learning of Features and Hyperparameters for Optimized, Explainable Machine Learning
por: de Lacy, Nina, et al.
Publicado: (2022)