Cargando…
Semisupervised Learning with Report-guided Pseudo Labels for Deep Learning–based Prostate Cancer Detection Using Biparametric MRI
PURPOSE: To evaluate a novel method of semisupervised learning (SSL) guided by automated sparse information from diagnostic reports to leverage additional data for deep learning–based malignancy detection in patients with clinically significant prostate cancer. MATERIALS AND METHODS: This retrospect...
Autores principales: | Bosma, Joeran S., Saha, Anindo, Hosseinzadeh, Matin, Slootweg, Ivan, de Rooij, Maarten, Huisman, Henkjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546362/ https://www.ncbi.nlm.nih.gov/pubmed/37795142 http://dx.doi.org/10.1148/ryai.230031 |
Ejemplares similares
-
Deep learning–assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge
por: Hosseinzadeh, Matin, et al.
Publicado: (2021) -
Artificial intelligence for prostate MRI: open datasets, available applications, and grand challenges
por: Sunoqrot, Mohammed R. S., et al.
Publicado: (2022) -
A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics
por: Bleker, Jeroen, et al.
Publicado: (2022) -
Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography
por: Alves, Natália, et al.
Publicado: (2022) -
Complexities of deep learning-based undersampled MR image reconstruction
por: Noordman, Constant Richard, et al.
Publicado: (2023)