Cargando…
Federated learning for medical imaging radiology
Federated learning (FL) is gaining wide acceptance across the medical AI domains. FL promises to provide a fairly acceptable clinical-grade accuracy, privacy, and generalisability of machine learning models across multiple institutions. However, the research on FL for medical imaging AI is still in...
Autores principales: | Rehman, Muhammad Habib ur, Hugo Lopez Pinaya, Walter, Nachev, Parashkev, Teo, James T., Ourselin, Sebastin, Cardoso, M. Jorge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546441/ https://www.ncbi.nlm.nih.gov/pubmed/38011227 http://dx.doi.org/10.1259/bjr.20220890 |
Ejemplares similares
-
Clinical applications of artificial intelligence in radiology
por: Mello-Thoms, Claudia, et al.
Publicado: (2023) -
Interpretable artificial intelligence in radiology and radiation oncology
por: Cui, Sunan, et al.
Publicado: (2023) -
Effects of deep learning on radiologists’ and radiology residents’ performance in identifying esophageal cancer on CT
por: Yasaka, Koichiro, et al.
Publicado: (2023) -
How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method
por: Kelly, Brendan S, et al.
Publicado: (2023) -
AI for PET image reconstruction
por: Reader, Andrew J, et al.
Publicado: (2023)