Cargando…

AI pitfalls and what not to do: mitigating bias in AI

Various forms of artificial intelligence (AI) applications are being deployed and used in many healthcare systems. As the use of these applications increases, we are learning the failures of these models and how they can perpetuate bias. With these new lessons, we need to prioritize bias evaluation...

Descripción completa

Detalles Bibliográficos
Autores principales: Gichoya, Judy Wawira, Thomas, Kaesha, Celi, Leo Anthony, Safdar, Nabile, Banerjee, Imon, Banja, John D, Seyyed-Kalantari, Laleh, Trivedi, Hari, Purkayastha, Saptarshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The British Institute of Radiology. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546443/
https://www.ncbi.nlm.nih.gov/pubmed/37698583
http://dx.doi.org/10.1259/bjr.20230023
Descripción
Sumario:Various forms of artificial intelligence (AI) applications are being deployed and used in many healthcare systems. As the use of these applications increases, we are learning the failures of these models and how they can perpetuate bias. With these new lessons, we need to prioritize bias evaluation and mitigation for radiology applications; all the while not ignoring the impact of changes in the larger enterprise AI deployment which may have downstream impact on performance of AI models. In this paper, we provide an updated review of known pitfalls causing AI bias and discuss strategies for mitigating these biases within the context of AI deployment in the larger healthcare enterprise. We describe these pitfalls by framing them in the larger AI lifecycle from problem definition, data set selection and curation, model training and deployment emphasizing that bias exists across a spectrum and is a sequela of a combination of both human and machine factors.