Cargando…
AI pitfalls and what not to do: mitigating bias in AI
Various forms of artificial intelligence (AI) applications are being deployed and used in many healthcare systems. As the use of these applications increases, we are learning the failures of these models and how they can perpetuate bias. With these new lessons, we need to prioritize bias evaluation...
Autores principales: | Gichoya, Judy Wawira, Thomas, Kaesha, Celi, Leo Anthony, Safdar, Nabile, Banerjee, Imon, Banja, John D, Seyyed-Kalantari, Laleh, Trivedi, Hari, Purkayastha, Saptarshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546443/ https://www.ncbi.nlm.nih.gov/pubmed/37698583 http://dx.doi.org/10.1259/bjr.20230023 |
Ejemplares similares
-
Patient-specific COVID-19 resource utilization prediction using fusion AI model
por: Tariq, Amara, et al.
Publicado: (2021) -
AI for PET image reconstruction
por: Reader, Andrew J, et al.
Publicado: (2023) -
A DICOM Framework for Machine Learning and Processing Pipelines Against Real-time Radiology Images
por: Kathiravelu, Pradeeban, et al.
Publicado: (2021) -
Implementation of AI image reconstruction in CT—how is it validated and what dose reductions can be achieved
por: Brady, Samuel L.
Publicado: (2023) -
AI in medical imaging grand challenges: translation from competition to research benefit and patient care
por: Armato, Samuel G, et al.
Publicado: (2023)