Cargando…
Effects of deep learning on radiologists’ and radiology residents’ performance in identifying esophageal cancer on CT
OBJECTIVE: To investigate the effectiveness of a deep learning model in helping radiologists or radiology residents detect esophageal cancer on contrast-enhanced CT images. METHODS: This retrospective study included 250 and 25 patients with and without esophageal cancer, respectively, who underwent...
Autores principales: | Yasaka, Koichiro, Hatano, Sosuke, Mizuki, Masumi, Okimoto, Naomasa, Kubo, Takatoshi, Shibata, Eisuke, Watadani, Takeyuki, Abe, Osamu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546446/ https://www.ncbi.nlm.nih.gov/pubmed/37000686 http://dx.doi.org/10.1259/bjr.20220685 |
Ejemplares similares
-
Federated learning for medical imaging radiology
por: Rehman, Muhammad Habib ur, et al.
Publicado: (2023) -
Clinical applications of artificial intelligence in radiology
por: Mello-Thoms, Claudia, et al.
Publicado: (2023) -
Interpretable artificial intelligence in radiology and radiation oncology
por: Cui, Sunan, et al.
Publicado: (2023) -
How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method
por: Kelly, Brendan S, et al.
Publicado: (2023) -
AI for PET image reconstruction
por: Reader, Andrew J, et al.
Publicado: (2023)