Cargando…
Interpretable artificial intelligence in radiology and radiation oncology
Artificial intelligence has been introduced to clinical practice, especially radiology and radiation oncology, from image segmentation, diagnosis, treatment planning and prognosis. It is not only crucial to have an accurate artificial intelligence model, but also to understand the internal logic and...
Autores principales: | Cui, Sunan, Traverso, Alberto, Niraula, Dipesh, Zou, Jiaren, Luo, Yi, Owen, Dawn, El Naqa, Issam, Wei, Lise |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546466/ https://www.ncbi.nlm.nih.gov/pubmed/37493248 http://dx.doi.org/10.1259/bjr.20230142 |
Ejemplares similares
-
Artificial intelligence (AI) and machine learning (ML) in precision oncology: a review on enhancing discoverability through multiomics integration
por: Wei, Lise, et al.
Publicado: (2023) -
Clinical applications of artificial intelligence in radiology
por: Mello-Thoms, Claudia, et al.
Publicado: (2023) -
How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method
por: Kelly, Brendan S, et al.
Publicado: (2023) -
Federated learning for medical imaging radiology
por: Rehman, Muhammad Habib ur, et al.
Publicado: (2023) -
Effects of deep learning on radiologists’ and radiology residents’ performance in identifying esophageal cancer on CT
por: Yasaka, Koichiro, et al.
Publicado: (2023)