Cargando…
How to apply evidence-based practice to the use of artificial intelligence in radiology (EBRAI) using the data algorithm training output (DATO) method
OBJECTIVE: As the number of radiology artificial intelligence (AI) papers increases, there are new challenges for reviewing the AI literature as well as differences to be aware of, for those familiar with the clinical radiology literature. We aim to introduce a tool to aid in this process. METHODS:...
Autores principales: | Kelly, Brendan S, Judge, Conor, Hoare, Siobhan, Colleran, Gabrielle, Lawlor, Aonghus, Killeen, Ronan P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546467/ https://www.ncbi.nlm.nih.gov/pubmed/37086062 http://dx.doi.org/10.1259/bjr.20220215 |
Ejemplares similares
-
Federated learning for medical imaging radiology
por: Rehman, Muhammad Habib ur, et al.
Publicado: (2023) -
Clinical applications of artificial intelligence in radiology
por: Mello-Thoms, Claudia, et al.
Publicado: (2023) -
Interpretable artificial intelligence in radiology and radiation oncology
por: Cui, Sunan, et al.
Publicado: (2023) -
Effects of deep learning on radiologists’ and radiology residents’ performance in identifying esophageal cancer on CT
por: Yasaka, Koichiro, et al.
Publicado: (2023) -
AI for PET image reconstruction
por: Reader, Andrew J, et al.
Publicado: (2023)