Cargando…
Histone regulator KAT2A acts as a potential biomarker related to tumor microenvironment and prognosis of diffuse large B cell lymphoma
BACKGROUND: Recent studies have indicated that epigenetic alterations contribute significantly to lymphoma pathogenesis. A type of epigenetic regulation known as histone acetylation plays a crucial role in transcriptional regulation in eukaryotic cells. Specifically, a significant effect of histone...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546681/ https://www.ncbi.nlm.nih.gov/pubmed/37789275 http://dx.doi.org/10.1186/s12885-023-11401-4 |
Sumario: | BACKGROUND: Recent studies have indicated that epigenetic alterations contribute significantly to lymphoma pathogenesis. A type of epigenetic regulation known as histone acetylation plays a crucial role in transcriptional regulation in eukaryotic cells. Specifically, a significant effect of histone acetylation modifications on the abnormal progression and microenvironment of diffuse large B-cell lymphoma (DLBCL) has been observed. METHODS: To provide insight into the significance of histone acetylation-related genes, we developed a HAscore model for analyzing histone acetylation patterns in DLBCL samples. Furthermore, KAT2A, a regulator of histone acetylation, was knocked down in DLBCL cell lines to investigate its role in proliferation, cell cycle, and apoptosis. RESULTS: The HAscore model has been demonstrated to provide insight into the significance of these patterns, showing that patients with a low HAscore have distinct tumor immune microenvironments and poorer prognoses. Besides, KAT2A was identified as a potential biomarker related to immune infiltration and malignant pathways in DLBCL. CONCLUSION: According to these findings, it is evident that the histone acetylation pattern score model is helpful in describing the immune status of DLBCL and that KAT2A may be used as a biomarker for its treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-023-11401-4. |
---|