Cargando…
Assessing eligibility for lung cancer screening using parsimonious ensemble machine learning models: A development and validation study
BACKGROUND: Risk-based screening for lung cancer is currently being considered in several countries; however, the optimal approach to determine eligibility remains unclear. Ensemble machine learning could support the development of highly parsimonious prediction models that maintain the performance...
Autores principales: | Callender, Thomas, Imrie, Fergus, Cebere, Bogdan, Pashayan, Nora, Navani, Neal, van der Schaar, Mihaela, Janes, Sam M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547178/ https://www.ncbi.nlm.nih.gov/pubmed/37788223 http://dx.doi.org/10.1371/journal.pmed.1004287 |
Ejemplares similares
-
AutoPrognosis 2.0: Democratizing diagnostic and prognostic modeling in healthcare with automated machine learning
por: Imrie, Fergus, et al.
Publicado: (2023) -
Synthetic Model Combination: A new machine‐learning method for pharmacometric model ensembling
por: Chan, Alexander, et al.
Publicado: (2023) -
Improving the Efficiency of Clinical Trial Recruitment Using an Ensemble Machine Learning to Assist With Eligibility Screening
por: Cai, Tianrun, et al.
Publicado: (2021) -
Deep Generative Models for 3D Linker Design
por: Imrie, Fergus, et al.
Publicado: (2020) -
Representing and extending ensembles of parsimonious evolutionary histories with a directed acyclic graph
por: Dumm, Will, et al.
Publicado: (2023)