Cargando…
Balancing true and false detection of intermittent sensory targets by adjusting the inputs to the evidence accumulation process
Decisions about noisy stimuli are widely understood to be made by accumulating evidence up to a decision bound that can be adjusted according to task demands. However, relatively little is known about how such mechanisms operate in continuous monitoring contexts requiring intermittent target detecti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547474/ https://www.ncbi.nlm.nih.gov/pubmed/37646405 http://dx.doi.org/10.7554/eLife.83025 |
_version_ | 1785115066106904576 |
---|---|
author | Geuzebroek, Anna C Craddock, Hannah O'Connell, Redmond G Kelly, Simon P |
author_facet | Geuzebroek, Anna C Craddock, Hannah O'Connell, Redmond G Kelly, Simon P |
author_sort | Geuzebroek, Anna C |
collection | PubMed |
description | Decisions about noisy stimuli are widely understood to be made by accumulating evidence up to a decision bound that can be adjusted according to task demands. However, relatively little is known about how such mechanisms operate in continuous monitoring contexts requiring intermittent target detection. Here, we examined neural decision processes underlying detection of 1 s coherence targets within continuous random dot motion, and how they are adjusted across contexts with weak, strong, or randomly mixed weak/strong targets. Our prediction was that decision bounds would be set lower when weak targets are more prevalent. Behavioural hit and false alarm rate patterns were consistent with this, and were well captured by a bound-adjustable leaky accumulator model. However, beta-band EEG signatures of motor preparation contradicted this, instead indicating lower bounds in the strong-target context. We thus tested two alternative models in which decision-bound dynamics were constrained directly by beta measurements, respectively, featuring leaky accumulation with adjustable leak, and non-leaky accumulation of evidence referenced to an adjustable sensory-level criterion. We found that the latter model best explained both behaviour and neural dynamics, highlighting novel means of decision policy regulation and the value of neurally informed modelling. |
format | Online Article Text |
id | pubmed-10547474 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-105474742023-10-04 Balancing true and false detection of intermittent sensory targets by adjusting the inputs to the evidence accumulation process Geuzebroek, Anna C Craddock, Hannah O'Connell, Redmond G Kelly, Simon P eLife Neuroscience Decisions about noisy stimuli are widely understood to be made by accumulating evidence up to a decision bound that can be adjusted according to task demands. However, relatively little is known about how such mechanisms operate in continuous monitoring contexts requiring intermittent target detection. Here, we examined neural decision processes underlying detection of 1 s coherence targets within continuous random dot motion, and how they are adjusted across contexts with weak, strong, or randomly mixed weak/strong targets. Our prediction was that decision bounds would be set lower when weak targets are more prevalent. Behavioural hit and false alarm rate patterns were consistent with this, and were well captured by a bound-adjustable leaky accumulator model. However, beta-band EEG signatures of motor preparation contradicted this, instead indicating lower bounds in the strong-target context. We thus tested two alternative models in which decision-bound dynamics were constrained directly by beta measurements, respectively, featuring leaky accumulation with adjustable leak, and non-leaky accumulation of evidence referenced to an adjustable sensory-level criterion. We found that the latter model best explained both behaviour and neural dynamics, highlighting novel means of decision policy regulation and the value of neurally informed modelling. eLife Sciences Publications, Ltd 2023-08-30 /pmc/articles/PMC10547474/ /pubmed/37646405 http://dx.doi.org/10.7554/eLife.83025 Text en © 2023, Geuzebroek et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Geuzebroek, Anna C Craddock, Hannah O'Connell, Redmond G Kelly, Simon P Balancing true and false detection of intermittent sensory targets by adjusting the inputs to the evidence accumulation process |
title | Balancing true and false detection of intermittent sensory targets by adjusting the inputs to the evidence accumulation process |
title_full | Balancing true and false detection of intermittent sensory targets by adjusting the inputs to the evidence accumulation process |
title_fullStr | Balancing true and false detection of intermittent sensory targets by adjusting the inputs to the evidence accumulation process |
title_full_unstemmed | Balancing true and false detection of intermittent sensory targets by adjusting the inputs to the evidence accumulation process |
title_short | Balancing true and false detection of intermittent sensory targets by adjusting the inputs to the evidence accumulation process |
title_sort | balancing true and false detection of intermittent sensory targets by adjusting the inputs to the evidence accumulation process |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547474/ https://www.ncbi.nlm.nih.gov/pubmed/37646405 http://dx.doi.org/10.7554/eLife.83025 |
work_keys_str_mv | AT geuzebroekannac balancingtrueandfalsedetectionofintermittentsensorytargetsbyadjustingtheinputstotheevidenceaccumulationprocess AT craddockhannah balancingtrueandfalsedetectionofintermittentsensorytargetsbyadjustingtheinputstotheevidenceaccumulationprocess AT oconnellredmondg balancingtrueandfalsedetectionofintermittentsensorytargetsbyadjustingtheinputstotheevidenceaccumulationprocess AT kellysimonp balancingtrueandfalsedetectionofintermittentsensorytargetsbyadjustingtheinputstotheevidenceaccumulationprocess |