Cargando…
Complexities of deep learning-based undersampled MR image reconstruction
Artificial intelligence has opened a new path of innovation in magnetic resonance (MR) image reconstruction of undersampled k-space acquisitions. This review offers readers an analysis of the current deep learning-based MR image reconstruction methods. The literature in this field shows exponential...
Autores principales: | Noordman, Constant Richard, Yakar, Derya, Bosma, Joeran, Simonis, Frank Frederikus Jacobus, Huisman, Henkjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547669/ https://www.ncbi.nlm.nih.gov/pubmed/37789241 http://dx.doi.org/10.1186/s41747-023-00372-7 |
Ejemplares similares
-
Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography
por: Alves, Natália, et al.
Publicado: (2022) -
Semisupervised Learning with Report-guided Pseudo Labels for Deep
Learning–based Prostate Cancer Detection Using Biparametric
MRI
por: Bosma, Joeran S., et al.
Publicado: (2023) -
Artificial intelligence for prostate MRI: open datasets, available applications, and grand challenges
por: Sunoqrot, Mohammed R. S., et al.
Publicado: (2022) -
Undersampled MR Image Reconstruction with Data-Driven Tight Frame
por: Liu, Jianbo, et al.
Publicado: (2015) -
Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior
por: Zhao, Di, et al.
Publicado: (2021)