Cargando…
Accelerating the prediction of CO(2) capture at low partial pressures in metal-organic frameworks using new machine learning descriptors
Metal-Organic frameworks (MOFs) have been considered for various gas storage and separation applications. Theoretically, there are an infinite number of MOFs that can be created; however, a finite amount of resources are available to evaluate each one. Computational methods can be adapted to expedit...
Autores principales: | Orhan, Ibrahim B., Le, Tu C., Babarao, Ravichandar, Thornton, Aaron W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547688/ https://www.ncbi.nlm.nih.gov/pubmed/37789142 http://dx.doi.org/10.1038/s42004-023-01009-x |
Ejemplares similares
-
Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework
por: Qazvini, Omid T., et al.
Publicado: (2021) -
On/off porosity switching and post-assembly modifications of Cu(4)L(4) metal–organic polyhedra
por: Bloch, Witold M., et al.
Publicado: (2020) -
Acoustomicrofluidic assembly of oriented and simultaneously activated metal–organic frameworks
por: Ahmed, Heba, et al.
Publicado: (2019) -
Elucidating the mechanisms of Paraffin-Olefin separations using nanoporous adsorbents: An overview
por: Saha, Dipendu, et al.
Publicado: (2021) -
Capturing chemical intuition in synthesis of metal-organic frameworks
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2019)