Cargando…
Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks
Automating retrosynthesis with artificial intelligence expedites organic chemistry research in digital laboratories. However, most existing deep-learning approaches are hard to explain, like a “black box” with few insights. Here, we propose RetroExplainer, formulizing the retrosynthesis task into a...
Autores principales: | Wang, Yu, Pang, Chao, Wang, Yuzhe, Jin, Junru, Zhang, Jingjie, Zeng, Xiangxiang, Su, Ran, Zou, Quan, Wei, Leyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547708/ https://www.ncbi.nlm.nih.gov/pubmed/37788995 http://dx.doi.org/10.1038/s41467-023-41698-5 |
Ejemplares similares
-
Retrosynthesis of multi-component metal−organic frameworks
por: Yuan, Shuai, et al.
Publicado: (2018) -
iDNA-ABF: multi-scale deep biological language learning model for the interpretable prediction of DNA methylations
por: Jin, Junru, et al.
Publicado: (2022) -
DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis
por: Wang, Ruheng, et al.
Publicado: (2023) -
Similarity based enzymatic retrosynthesis
por: Sankaranarayanan, Karthik, et al.
Publicado: (2022) -
Computer-Assisted Retrosynthesis Based on Molecular
Similarity
por: Coley, Connor W., et al.
Publicado: (2017)