Cargando…
Cells solved the Gibbs paradox by learning to contain entropic forces
As Nature’s version of machine learning, evolution has solved many extraordinarily complex problems, none perhaps more remarkable than learning to harness an increase in chemical entropy (disorder) to generate directed chemical forces (order). Using muscle as a model system, here I describe the basi...
Autor principal: | Baker, Josh E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547751/ https://www.ncbi.nlm.nih.gov/pubmed/37789054 http://dx.doi.org/10.1038/s41598-023-43532-w |
Ejemplares similares
-
Cells Solved the Gibbs Paradox by Learning to Contain Entropic Forces
por: Baker, Josh E.
Publicado: (2023) -
Gibbs' entropic paradox and problems of separation processes
por: Barsky, Eugene
Publicado: (2017) -
Entropic Dynamics on Gibbs Statistical Manifolds
por: Pessoa, Pedro, et al.
Publicado: (2021) -
The Gibbs Paradox
por: Saunders, Simon
Publicado: (2018) -
Jaynes-Gibbs Entropic Convex Duals and Orthogonal Polynomials
por: Le Blanc, Richard
Publicado: (2022)