Cargando…
Predicting compressive strength of RCFST columns under different loading scenarios using machine learning optimization
Accurate bearing capacity assessment under load conditions is essential for the design of concrete-filled steel tube (CFST) columns. This paper presents an optimization-based machine learning method to estimate the ultimate compressive strength of rectangular concrete-filled steel tube (RCFST) colum...
Autores principales: | Wu, Feng, Tang, Fei, Lu, Ruichen, Cheng, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547767/ https://www.ncbi.nlm.nih.gov/pubmed/37789042 http://dx.doi.org/10.1038/s41598-023-43463-6 |
Ejemplares similares
-
Application of machine learning models in the capacity prediction of RCFST columns
por: Megahed, Khaled, et al.
Publicado: (2023) -
Application of ensemble model in capacity prediction of the CCFST columns under axial and eccentric loading
por: Wang, Jing, et al.
Publicado: (2023) -
High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers
por: Perceka, Wisena, et al.
Publicado: (2016) -
Acoustic Emission Monitoring of High-Strength Concrete Columns Subjected to Compressive Axial Loading
por: Eid, Rami, et al.
Publicado: (2020) -
Axial Compressive Strength Models of Eccentrically-Loaded Rectangular Reinforced Concrete Columns Confined with FRP
por: Isleem, Haytham F., et al.
Publicado: (2021)