Cargando…
An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
Raman spectroscopy shows great potential as a diagnostic tool for thyroid cancer due to its ability to detect biochemical changes during cancer development. This technique is particularly valuable because it is non-invasive and label/dye-free. Compared to molecular tests, Raman spectroscopy analyses...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547772/ https://www.ncbi.nlm.nih.gov/pubmed/37789191 http://dx.doi.org/10.1038/s41598-023-43856-7 |
_version_ | 1785115127726473216 |
---|---|
author | Bellantuono, Loredana Tommasi, Raffaele Pantaleo, Ester Verri, Martina Amoroso, Nicola Crucitti, Pierfilippo Di Gioacchino, Michael Longo, Filippo Monaco, Alfonso Naciu, Anda Mihaela Palermo, Andrea Taffon, Chiara Tangaro, Sabina Crescenzi, Anna Sodo, Armida Bellotti, Roberto |
author_facet | Bellantuono, Loredana Tommasi, Raffaele Pantaleo, Ester Verri, Martina Amoroso, Nicola Crucitti, Pierfilippo Di Gioacchino, Michael Longo, Filippo Monaco, Alfonso Naciu, Anda Mihaela Palermo, Andrea Taffon, Chiara Tangaro, Sabina Crescenzi, Anna Sodo, Armida Bellotti, Roberto |
author_sort | Bellantuono, Loredana |
collection | PubMed |
description | Raman spectroscopy shows great potential as a diagnostic tool for thyroid cancer due to its ability to detect biochemical changes during cancer development. This technique is particularly valuable because it is non-invasive and label/dye-free. Compared to molecular tests, Raman spectroscopy analyses can more effectively discriminate malignant features, thus reducing unnecessary surgeries. However, one major hurdle to using Raman spectroscopy as a diagnostic tool is the identification of significant patterns and peaks. In this study, we propose a Machine Learning procedure to discriminate healthy/benign versus malignant nodules that produces interpretable results. We collect Raman spectra obtained from histological samples, select a set of peaks with a data-driven and label independent approach and train the algorithms with the relative prominence of the peaks in the selected set. The performance of the considered models, quantified by area under the Receiver Operating Characteristic curve, exceeds 0.9. To enhance the interpretability of the results, we employ eXplainable Artificial Intelligence and compute the contribution of each feature to the prediction of each sample. |
format | Online Article Text |
id | pubmed-10547772 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105477722023-10-05 An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis Bellantuono, Loredana Tommasi, Raffaele Pantaleo, Ester Verri, Martina Amoroso, Nicola Crucitti, Pierfilippo Di Gioacchino, Michael Longo, Filippo Monaco, Alfonso Naciu, Anda Mihaela Palermo, Andrea Taffon, Chiara Tangaro, Sabina Crescenzi, Anna Sodo, Armida Bellotti, Roberto Sci Rep Article Raman spectroscopy shows great potential as a diagnostic tool for thyroid cancer due to its ability to detect biochemical changes during cancer development. This technique is particularly valuable because it is non-invasive and label/dye-free. Compared to molecular tests, Raman spectroscopy analyses can more effectively discriminate malignant features, thus reducing unnecessary surgeries. However, one major hurdle to using Raman spectroscopy as a diagnostic tool is the identification of significant patterns and peaks. In this study, we propose a Machine Learning procedure to discriminate healthy/benign versus malignant nodules that produces interpretable results. We collect Raman spectra obtained from histological samples, select a set of peaks with a data-driven and label independent approach and train the algorithms with the relative prominence of the peaks in the selected set. The performance of the considered models, quantified by area under the Receiver Operating Characteristic curve, exceeds 0.9. To enhance the interpretability of the results, we employ eXplainable Artificial Intelligence and compute the contribution of each feature to the prediction of each sample. Nature Publishing Group UK 2023-10-03 /pmc/articles/PMC10547772/ /pubmed/37789191 http://dx.doi.org/10.1038/s41598-023-43856-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Bellantuono, Loredana Tommasi, Raffaele Pantaleo, Ester Verri, Martina Amoroso, Nicola Crucitti, Pierfilippo Di Gioacchino, Michael Longo, Filippo Monaco, Alfonso Naciu, Anda Mihaela Palermo, Andrea Taffon, Chiara Tangaro, Sabina Crescenzi, Anna Sodo, Armida Bellotti, Roberto An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis |
title | An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis |
title_full | An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis |
title_fullStr | An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis |
title_full_unstemmed | An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis |
title_short | An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis |
title_sort | explainable artificial intelligence analysis of raman spectra for thyroid cancer diagnosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547772/ https://www.ncbi.nlm.nih.gov/pubmed/37789191 http://dx.doi.org/10.1038/s41598-023-43856-7 |
work_keys_str_mv | AT bellantuonoloredana anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT tommasiraffaele anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT pantaleoester anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT verrimartina anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT amorosonicola anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT crucittipierfilippo anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT digioacchinomichael anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT longofilippo anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT monacoalfonso anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT naciuandamihaela anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT palermoandrea anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT taffonchiara anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT tangarosabina anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT crescenzianna anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT sodoarmida anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT bellottiroberto anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT bellantuonoloredana explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT tommasiraffaele explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT pantaleoester explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT verrimartina explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT amorosonicola explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT crucittipierfilippo explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT digioacchinomichael explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT longofilippo explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT monacoalfonso explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT naciuandamihaela explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT palermoandrea explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT taffonchiara explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT tangarosabina explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT crescenzianna explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT sodoarmida explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis AT bellottiroberto explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis |