Cargando…

An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis

Raman spectroscopy shows great potential as a diagnostic tool for thyroid cancer due to its ability to detect biochemical changes during cancer development. This technique is particularly valuable because it is non-invasive and label/dye-free. Compared to molecular tests, Raman spectroscopy analyses...

Descripción completa

Detalles Bibliográficos
Autores principales: Bellantuono, Loredana, Tommasi, Raffaele, Pantaleo, Ester, Verri, Martina, Amoroso, Nicola, Crucitti, Pierfilippo, Di Gioacchino, Michael, Longo, Filippo, Monaco, Alfonso, Naciu, Anda Mihaela, Palermo, Andrea, Taffon, Chiara, Tangaro, Sabina, Crescenzi, Anna, Sodo, Armida, Bellotti, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547772/
https://www.ncbi.nlm.nih.gov/pubmed/37789191
http://dx.doi.org/10.1038/s41598-023-43856-7
_version_ 1785115127726473216
author Bellantuono, Loredana
Tommasi, Raffaele
Pantaleo, Ester
Verri, Martina
Amoroso, Nicola
Crucitti, Pierfilippo
Di Gioacchino, Michael
Longo, Filippo
Monaco, Alfonso
Naciu, Anda Mihaela
Palermo, Andrea
Taffon, Chiara
Tangaro, Sabina
Crescenzi, Anna
Sodo, Armida
Bellotti, Roberto
author_facet Bellantuono, Loredana
Tommasi, Raffaele
Pantaleo, Ester
Verri, Martina
Amoroso, Nicola
Crucitti, Pierfilippo
Di Gioacchino, Michael
Longo, Filippo
Monaco, Alfonso
Naciu, Anda Mihaela
Palermo, Andrea
Taffon, Chiara
Tangaro, Sabina
Crescenzi, Anna
Sodo, Armida
Bellotti, Roberto
author_sort Bellantuono, Loredana
collection PubMed
description Raman spectroscopy shows great potential as a diagnostic tool for thyroid cancer due to its ability to detect biochemical changes during cancer development. This technique is particularly valuable because it is non-invasive and label/dye-free. Compared to molecular tests, Raman spectroscopy analyses can more effectively discriminate malignant features, thus reducing unnecessary surgeries. However, one major hurdle to using Raman spectroscopy as a diagnostic tool is the identification of significant patterns and peaks. In this study, we propose a Machine Learning procedure to discriminate healthy/benign versus malignant nodules that produces interpretable results. We collect Raman spectra obtained from histological samples, select a set of peaks with a data-driven and label independent approach and train the algorithms with the relative prominence of the peaks in the selected set. The performance of the considered models, quantified by area under the Receiver Operating Characteristic curve, exceeds 0.9. To enhance the interpretability of the results, we employ eXplainable Artificial Intelligence and compute the contribution of each feature to the prediction of each sample.
format Online
Article
Text
id pubmed-10547772
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105477722023-10-05 An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis Bellantuono, Loredana Tommasi, Raffaele Pantaleo, Ester Verri, Martina Amoroso, Nicola Crucitti, Pierfilippo Di Gioacchino, Michael Longo, Filippo Monaco, Alfonso Naciu, Anda Mihaela Palermo, Andrea Taffon, Chiara Tangaro, Sabina Crescenzi, Anna Sodo, Armida Bellotti, Roberto Sci Rep Article Raman spectroscopy shows great potential as a diagnostic tool for thyroid cancer due to its ability to detect biochemical changes during cancer development. This technique is particularly valuable because it is non-invasive and label/dye-free. Compared to molecular tests, Raman spectroscopy analyses can more effectively discriminate malignant features, thus reducing unnecessary surgeries. However, one major hurdle to using Raman spectroscopy as a diagnostic tool is the identification of significant patterns and peaks. In this study, we propose a Machine Learning procedure to discriminate healthy/benign versus malignant nodules that produces interpretable results. We collect Raman spectra obtained from histological samples, select a set of peaks with a data-driven and label independent approach and train the algorithms with the relative prominence of the peaks in the selected set. The performance of the considered models, quantified by area under the Receiver Operating Characteristic curve, exceeds 0.9. To enhance the interpretability of the results, we employ eXplainable Artificial Intelligence and compute the contribution of each feature to the prediction of each sample. Nature Publishing Group UK 2023-10-03 /pmc/articles/PMC10547772/ /pubmed/37789191 http://dx.doi.org/10.1038/s41598-023-43856-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Bellantuono, Loredana
Tommasi, Raffaele
Pantaleo, Ester
Verri, Martina
Amoroso, Nicola
Crucitti, Pierfilippo
Di Gioacchino, Michael
Longo, Filippo
Monaco, Alfonso
Naciu, Anda Mihaela
Palermo, Andrea
Taffon, Chiara
Tangaro, Sabina
Crescenzi, Anna
Sodo, Armida
Bellotti, Roberto
An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
title An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
title_full An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
title_fullStr An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
title_full_unstemmed An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
title_short An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
title_sort explainable artificial intelligence analysis of raman spectra for thyroid cancer diagnosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547772/
https://www.ncbi.nlm.nih.gov/pubmed/37789191
http://dx.doi.org/10.1038/s41598-023-43856-7
work_keys_str_mv AT bellantuonoloredana anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT tommasiraffaele anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT pantaleoester anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT verrimartina anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT amorosonicola anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT crucittipierfilippo anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT digioacchinomichael anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT longofilippo anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT monacoalfonso anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT naciuandamihaela anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT palermoandrea anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT taffonchiara anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT tangarosabina anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT crescenzianna anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT sodoarmida anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT bellottiroberto anexplainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT bellantuonoloredana explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT tommasiraffaele explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT pantaleoester explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT verrimartina explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT amorosonicola explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT crucittipierfilippo explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT digioacchinomichael explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT longofilippo explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT monacoalfonso explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT naciuandamihaela explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT palermoandrea explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT taffonchiara explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT tangarosabina explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT crescenzianna explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT sodoarmida explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis
AT bellottiroberto explainableartificialintelligenceanalysisoframanspectraforthyroidcancerdiagnosis